The Impact Analysis of Stamping Process Factors Based on Dynaform

2013 ◽  
Vol 712-715 ◽  
pp. 642-646
Author(s):  
Zhen Gang He ◽  
Yan Ping Zheng ◽  
Gai Yan

Combining with practical needs in production, it carried out the numerical simulation analysis of automobile beam stamping forming process based on Dynaform in this paper. According to quality evaluation index of forming parts, it analyzed the effect of variation of blank holder force, the stamping speed, the coefficient of friction and draw bead on stamping quality. It forecast the quality problems happened in forming process, which provides the theoretical basis for design of stamping process and mold.

2013 ◽  
Vol 423-426 ◽  
pp. 1858-1861 ◽  
Author(s):  
Guo Ying Ma ◽  
Bin Bing Huang ◽  
Shou Bo Jiang ◽  
Kui Chen

On the basis of studying the sheet bending forming mechanism, the process of V-bending has carried on the finite element simulation analysis. Aimed at the phenomenon such as the springback in the sheet forming process, according to the quality of formed parts evaluation index, the impact of changes on stamping parameters such as blank holder force, stamping velocity, friction coefficient was analyzed on the bending process and springback of stamping parts. The parts quality problems encountered in the process of stamping process were predicted, in order to provide a theoretical basis for the stamping process design and mold design to effectively shorten the mold design and production commissioning period.


2017 ◽  
Vol 872 ◽  
pp. 83-88
Author(s):  
Ramil Kesvarakul ◽  
Chamaporn Chianrabutra ◽  
Watcharapong Sirigool

Advanced high strength steels (AHSS) are widely used in the automotive industry due to their appropriate strength to weight ratio. This alloy has unique hardening behavior and variable unloading elastic modulus; however, the unavoidable obstacle of AHSS sheet metal forming is springback. The springback is a result of elastic recovery and residual stress. The aim of this study is to determine the proper process parameters enabling the reduction of the springback defects in AHSS forming process. This work was divided into two parts, regarding to the effects of numerical parameters and process parameter on forming AHSS. In this paper, a U-shape forming was used to examine the springback behaviors, such as springback angle, sidewall curl, and thickness, through an experiment. To achieve this purpose, 2k factorial statistical experimental design has been employed to investigate the parameters affecting the springback of forming in AHSS to find out the main effect in the springback reduction focusing on using as a guideline for die design. It showed that the blank holder force is the most influential parameter. The second is the punch radius. However, the blank holder force and punch radius is not simple to adjust in die design, the die radius becomes the important parameter to be used to reduce the springback angle.


2011 ◽  
Vol 383-390 ◽  
pp. 2785-2789
Author(s):  
Naoki Horiike ◽  
Shoichiro Yoshihara ◽  
Yoshitaka Tsuji ◽  
Yusuke Okude

In the deep-drawing process, the application of low-frequency vibration to the blank material has recently been focused on with the aim of improving the friction performance between the die and the blank material. A servo-controlled press machine is suitable for applying low-frequency vibration to the blank during the deep-drawing process, because the punch speed and blank holder force (BHF) are easily controlled as process parameters by using the servo motors. In this study, a BHF with low-frequency vibration was proposed as a technique for improving deep-drawability, which is mainly affected by the friction performance and the lubricant condition. We found that the friction performance between the blank surface and the blank holder was decreased in the case of a BHF with low-frequency vibration since the lubricating oil rapidly flowed into the clearance during the forming process. Furthermore, for a BHF with low-frequency vibration, the punch force and the deformation resistance were lower than those in a deep-drawing test without low-frequency vibration.


2010 ◽  
Vol 26-28 ◽  
pp. 320-325 ◽  
Author(s):  
Li Li Wang ◽  
Dong Sheng Li ◽  
Xiao Qiang Li ◽  
Liang Wang ◽  
Wei Jun Yang

Stretch forming process of aircraft skin over reconfigurable compliant tooling is a new technology in skin manufacturing. During this process, the coefficient of friction is important for modeling accurately the process of stretch forming. The objective of this research is to measure the coefficient of friction for aluminum alloy in contact with polyurethane rubber in reciprocal sliding. An orthogonal experimental design was used to reveal the impact of four factors on the coefficient of friction, including lubrication, normal load, aluminum alloy material and sliding velocity. It is shown that lubrication is a major factor, sliding velocity is a minor factor. The influence of normal pressure is less than sliding velocity and the influence of aluminum alloy material is not very obvious. Finally, based on the experiment results, the selections of lubricant and stretching velocity are discussed in order to improve the process of stretch forming.


2011 ◽  
Vol 291-294 ◽  
pp. 335-338
Author(s):  
Ying Tong

According to the shape character of some one automobile inner panel of front fender the forming steps characterized by some process combined was brought forward. Based on FEM software the drawing process was simulated by a blank-holder force scheme 100000N, 200000N, 300000N. As the simulation results, in order to eliminate the fractures in diagonal reinforcements, it is infeasible only to decrease blank-holder force, but enlarging the die round corner is necessary. As fractures have been eliminated, in order to eliminate wrinkles, the blank-holder force needs to be increased. Otherwise the wrinkle region can be confined into useless area which needs to be cut off. Finally none forming defects occur as blank-holder force 300000N and die round corner 5mm.


2015 ◽  
Vol 809-810 ◽  
pp. 265-270
Author(s):  
Aurelian Albut ◽  
Valentin Zichil ◽  
Adrian Judele

In case of sheet metal forming the main dimensional errors are caused by the springback phenomena. The present work deals with numerical simulation related to draw bending and springback of U - shaped part made from magnesium alloy. The current paper is trying to prove out the important role of the blank holder force with respect to the forming process. Though novel approaches relating to the formality of magnesium alloy sheets, the change of springback due to the characteristic of each process should be verified by finite element method. Springback refers to the elastic recovery of deformed parts. Springback occurs because of the elastic relief from the bending moment imparted to the sheet metal during forming. Springback is mainly influenced by the sheet thickness, the punch and die profile radii, initial clearance between punch and die, friction conditions, rolling direction of the materials, blankholder force and by material properties. In this study, the magnesium alloy strips with two types of material having the thickness of 1mm, are used to investigate springback characteristics in U-shape bending. The Dynaform 5.6 software was used to simulate the forming process, in which the blank holder force takes values between 15 and 35 kN. In this study, the springback was analyzed by U-forming at room temperature conditions with different blank holder forces. Springback decreased with the increase of the blank holding force. Excessive holding force cause irregular thinning of the material, especially in the radius area.


2009 ◽  
Vol 410-411 ◽  
pp. 263-269 ◽  
Author(s):  
Sivakumar DharMalingam ◽  
Paul Compston ◽  
Shankar Kalyanasundaram

This study investigates the effect of preheat temperature, blank holder force and feed rate on the formability of polypropylene based Fibre-Metal Laminates. Finite element method combined with Design of Experiments was used to determine the influence of the forming process parameters. The design of experiments was used to identify the relative influence of each process parameter considered in this study. A reduced set of coupled structural-thermal simulations using Ls-Dyna were carried out using a L9 orthogonal array. Simulations were carried out on the forming of domes. It was found that the blank holder force has the greatest influence to increase the minor/major ratios followed by feed rate and pre heat temperature. A more thorough investigation of preheat temperature illustrated an optimum preheat temperature at 130 °C.


2018 ◽  
Vol 232 ◽  
pp. 02039
Author(s):  
cunping Liu

The drawing process of a high strength steel part without blank holder force was numerically simulated based on Dynaform. In present investigation, the drawing velocity and velocity profile motion of punch was studied by simulating the drawing operation of high strength steel part. The results show that restricting drawing velocity and controlling velocity profile motion of punch could all reduce the spring back. The measure of restricting drawing velocity could reduce non-pressure forming spring back about 31% and Trapezoidal motion mode of punch is the most beneficial to reduce spring back.


2010 ◽  
Vol 97-101 ◽  
pp. 236-239
Author(s):  
Cheng Jun Han ◽  
Xin Bo Lin ◽  
Yan Bo Li

Experimental research on stamping of wrought aluminum alloy has been an important issue at home and abroad. In this paper, taking stamping of aluminum alloy hemispherical components for example, the effects of blank holder force (BHF) on stamping forming process of aluminum alloy are explored by methods of experiments and numerical simulation. Through experiments, the forming laws of hemispherical components are found out. The research shows that the BHF has significant effects on the quality of stamping components and reasonable BHF can greatly improve the formability of hemispherical components. Additionally, by applying simulation software in stamping, the development circle of product and its moulds can be shortened, and product quality and its competitiveness in the market can be improved.


Sign in / Sign up

Export Citation Format

Share Document