Numerical Simulation of Low-Permeability Fractured Reservoirs on Imbibition

2013 ◽  
Vol 712-715 ◽  
pp. 792-795 ◽  
Author(s):  
Yun Qiang Wu ◽  
Jing Song Li ◽  
Xin Hong Zhang ◽  
Jian Zhou ◽  
Tong Jing Liu

Low permeability fractured reservoir is a special reservoir with complex fracture distribution and dense matrix. Low permeability fractured reservoir always have small porosity, low pore pressure and permeability. Therefore, low permeability fractured reservoir has low oil recovery efficiency. Besides, the developing complex process and higher costs lead to lower economic benefit. Low permeability fractured reservoir production mechanisms in the fracture system mainly by the capillary force of water into the matrix. Therefore, the hydrophilic blocks of dense, self-priming effect of capillary water is the main mechanism of oil. In this study, numerical simulation, the establishment of a dual media model analysis showed that the capillary suction from the oil production rate and the final volume flow channel structure, the capillary force, viscosity of crude oil and other factors.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qiang Liu ◽  
Jianjun Liu ◽  
Guihong Pei ◽  
Zhengwen Zhu ◽  
Yun Lei

The fracture-control matrix unit (F-CMU) is a special body present in low-permeability fractured reservoirs that can be distinguished by a fracture system and a matrix system. The imbibition phenomenon of the F-CMU provides the possibility for secondary development of low-permeability fractured reservoirs because of the driving force including capillary force and gravity. However, the F-CMU is difficult to obtain during the field core drilling, which has limited the development for laboratory dynamic imbibition tests. Therefore, a new F-CMU reconstruction method is proposed in this study. According to the geometry and parameters, combining laser engraving technology, the fracture system is designed and engraved. Then, the F-CMU is established using a three-dimensional (3D) printed material called polyvinyl alcohol (PVA) as fracture support material which has a faster dissolution rate and causes less damage to the core due to water being the solvent. Finally, the porosity, permeability, and wettability of the matrix system and the T2 spectra from nuclear magnetic resonance (NMR) before and after reconstruction are measured. In addition, numerical simulation calculation of F-CMU permeability is performed. The results show that the characteristic parameters of the matrix system hardly change, indicating low damage to the core. The reconstructed fracture system is found on the T2 spectra, and the fracture permeability is consistent by comparing with the experimental and numerical simulation results. The permeability of the fracture system is about 104 orders of magnitude of the matrix system, which is closer to real core and meets the requirements needed for dynamic permeability experiments.


2021 ◽  
Author(s):  
Yue Shi ◽  
Kishore Mohanty ◽  
Manmath Panda

Abstract Oil-wetness and heterogeneity (i.e., existence of low and high permeability regions) are two main factors that result in low oil recovery by waterflood in carbonate reservoirs. The injected water is likely to flow through high permeability regions and bypass the oil in low permeability matrix. In this study, systematic coreflood tests were carried out in both "homogeneous" cores and "heterogeneous" cores. The heterogeneous coreflood test was proposed to model the heterogeneity of carbonate reservoirs, bypassing in low-permeability matrix during waterfloods, and dynamic imbibition of surfactant into the low-permeability matrix. The results of homogeneous coreflood tests showed that both secondary-waterflood and secondary-surfactant flood can achieve high oil recovery (>50%) from relatively homogenous cores. A shut-in phase after the surfactant injection resulted in an additional oil recovery, which suggests enough time should be allowed while using surfactants for wettability alteration. The core with a higher extent of heterogeneity produced lower oil recovery to waterflood in the coreflood tests. Final oil recovery from the matrix depends on matrix permeability as well as the rock heterogeneity. The results of heterogeneous coreflood tests showed that a slow surfactant injection (dynamic imbibition) can significantly improve the oil recovery if the oil-wet reservoir is not well-swept.


2021 ◽  
Author(s):  
Song Du ◽  
Seong Lee ◽  
Xian-Huan Wen ◽  
Yalchin Efendiev

Abstract The imbibition process due to capillary force is an important mechanism that controls fluid flow between the two domains, matrix and fracture, in naturally or hydraulically fractured reservoirs. Many simulation studies have been done in the past decades to understand the multi-phase flow in the tight and shale formation. Although significant advances have been made in large-scale modeling for both unconventional and conventional fields, the imbibition processes in the fractured reservoirs remains underestimated in numerical simulation, that limits confidence in long-term field production predictions. In the meanwhile, to simulate the near-fracture imbibition process, traditionally very-fine simulation grids have to be applied so that the physical phenomena of small-length scale could be captured. However, this leads to expensive computation cost to simulate full-field models with a large number of fractures. To improve numerical efficiency in field-scale modeling, we propose a similarity solution for the imbibition process that can be incorporated into the traditional finite difference formulation with coarse grid cells. The semi-analytical similarity solutions are validated by comparing with numerical simulation results with fine-scale grids. The comparison clearly indicates that the proposed algorithm accurately represents the flow behaviors in complex fracture models. Furthermore, we adopt the semi-analytical study to hydraulic fracture models using Embedded Discrete Fracture Model (Lee et al., 2001) in our numerical studies at different scales to represent hydraulic fractures that are interconnected. We demonstrate: 1) the imbibition is critical in determining flow behavior in a capillary force dominant model, 2) conventional EDFM has its limitation in capturing sub-cell flow behaviors near fractures, 3) combining the proposed similarity solution and EDFM, we can accurately represent the multi-phase flow near fractures with coarser grids, and 4) it is straightforward to adapt the similarity solution concept in finite-difference simulations for fractured reservoirs


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2243-2259 ◽  
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary Oil recovery in heterogeneous carbonate reservoirs is typically inefficient because of the presence of high-permeability fracture networks and unfavorable capillary forces within the oil-wet matrix. Foam, as a mobility-control agent, has been proposed to mitigate the effect of reservoir heterogeneity by diverting injected fluids from the high-permeability fractured zones into the low-permeability unswept rock matrix, hence improving the sweep efficiency. This paper describes the use of a low-interfacial-tension (low-IFT) foaming formulation to improve oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. This formulation provides both mobility control and oil/water IFT reduction to overcome the unfavorable capillary forces preventing invading fluids from entering an oil-filled matrix. Thus, as expected, the combination of mobility control and low-IFT significantly improves oil recovery compared with either foam or surfactant flooding. A three-component surfactant formulation was tailored using phase-behavior tests with seawater and crude oil from a targeted reservoir. The optimized formulation simultaneously can generate IFT of 10−2 mN/m and strong foam in porous media when oil is present. Foam flooding was investigated in a representative fractured core system, in which a well-defined fracture was created by splitting the core lengthwise and precisely controlling the fracture aperture by applying a specific confining pressure. The foam-flooding experiments reveal that, in an oil-wet fractured Edward Brown dolomite, our low-IFT foaming formulation recovers approximately 72% original oil in place (OOIP), whereas waterflooding recovers only less than 2% OOIP; moreover, the residual oil saturation in the matrix was lowered by more than 20% compared with a foaming formulation lacking a low-IFT property. Coreflood results also indicate that the low-IFT foam diverts primarily the aqueous surfactant solution into the matrix because of (1) mobility reduction caused by foam in the fracture, (2) significantly lower capillary entry pressure for surfactant solution compared with gas, and (3) increasing the water relative permeability in the matrix by decreasing the residual oil. The selective diversion effect of this low-IFT foaming system effectively recovers the trapped oil, which cannot be recovered with single surfactant or high-IFT foaming formulations applied to highly heterogeneous or fractured reservoirs.


2013 ◽  
Vol 631-632 ◽  
pp. 140-144
Author(s):  
Li Li

In this paper, the produced water in Daqing oilfield was detected, includes the viscosity and concentration ratio of living polymer (LH-1), interfacial tension and swelling rate of particle polymer (LHP-1). And its adaptability in low permeable fracture core was also tested. The results show that the injection property is good if the living polymer (LH-1) and the particle polymer (LHP-1) are used together, the volume-expansion particle polymer can effectively plugging the high permeable layer in bottom of the reservoir and improve water injection profile. The best injection volume of LH-1is 0.32 PV, and enhances oil recovery rate is 18.4%.


1965 ◽  
Vol 5 (01) ◽  
pp. 60-66 ◽  
Author(s):  
A.S. Odeh

Abstract A simplified model was employed to develop mathematically equations that describe the unsteady-state behavior of naturally fractured reservoirs. The analysis resulted in an equation of flow of radial symmetry whose solution, for the infinite case, is identical in form and function to that describing the unsteady-state behavior of homogeneous reservoirs. Accepting the assumed model, for all practical purposes one cannot distinguish between fractured and homogeneous reservoirs from pressure build-up and/or drawdown plots. Introduction The bulk of reservoir engineering research and techniques has been directed toward homogeneous reservoirs, whose physical characteristics, such as porosity and permeability, are considered, on the average, to be constant. However, many prolific reservoirs, especially in the Middle East, are naturally fractured. These reservoirs consist of two distinct elements, namely fractures and matrix, each of which contains its characteristic porosity and permeability. Because of this, the extension of conventional methods of reservoir engineering analysis to fractured reservoirs without mathematical justification could lead to results of uncertain value. The early reported work on artificially and naturally fractured reservoirs consists mainly of papers by Pollard, Freeman and Natanson, and Samara. The most familiar method is that of Pollard. A more recent paper by Warren and Root showed how the Pollard method could lead to erroneous results. Warren and Root analyzed a plausible two-dimensional model of fractured reservoirs. They concluded that a Horner-type pressure build-up plot of a well producing from a factured reservoir may be characterized by two parallel linear segments. These segments form the early and the late portions of the build-up plot and are connected by a transitional curve. In our analysis of pressure build-up and drawdown data obtained on several wells from various fractured reservoirs, two parallel straight lines were not observed. In fact, the build-up and drawdown plots were similar in shape to those obtained on homogeneous reservoirs. Fractured reservoirs, due to their complexity, could be represented by various mathematical models, none of which may be completely descriptive and satisfactory for all systems. This is so because the fractures and matrix blocks can be diverse in pattern, size, and geometry not only between one reservoir and another but also within a single reservoir. Therefore, one mathematical model may lead to a satisfactory solution in one case and fail in another. To understand the behavior of the pressure build-up and drawdown data that were studied, and to explain the shape of the resulting plots, a fractured reservoir model was employed and analyzed mathematically. The model is based on the following assumptions:1. The matrix blocks act like sources which feed the fractures with fluid;2. The net fluid movement toward the wellbore obtains only in the fractures; and3. The fractures' flow capacity and the degree of fracturing of the reservoir are uniform. By the degree of fracturing is meant the fractures' bulk volume per unit reservoir bulk volume. Assumption 3 does not stipulate that either the fractures or the matrix blocks should possess certain size, uniformity, geometric pattern, spacing, or direction. Moreover, this assumption of uniform flow capacity and degree of fracturing should be taken in the same general sense as one accepts uniform permeability and porosity assumptions in a homogeneous reservoir when deriving the unsteady-state fluid flow equation. Thus, the assumption may not be unreasonable, especially if one considers the evidence obtained from examining samples of fractured outcrops and reservoirs. Such samples show that the matrix usually consists of numerous blocks, all of which are small compared to the reservoir dimensions and well spacings. Therefore, the model could be described to represent a "homogeneously" fractured reservoir. SPEJ P. 60ˆ


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 101-111 ◽  
Author(s):  
Mohammad Mirzaei ◽  
David A. DiCarlo ◽  
Gary A. Pope

Summary Imbibition of surfactant solution into the oil-wet matrix in fractured reservoirs is a complicated process that involves gravity, capillary, viscous, and diffusive forces. The standard experiment for testing imbibition of surfactant solution involves an imbibition cell, in which the core is placed in the surfactant solution and the recovery is measured vs. time. Although these experiments prove the effectiveness of surfactants, little insight into the physics of the problem is achieved. In this study, we performed water and surfactant flooding into oil-wet fractured cores and monitored the imbibition of the surfactant solution by use of computed-tomography (CT) scanning. From the CT images, the surfactant-imbibition dynamics as a function of height along the core was obtained. Although the waterflood only displaced oil from the fracture, the surfactant solution imbibed into the matrix; the imbibition is frontal, with the greatest imbibition rate at the bottom of the core, and the imbibition decreases roughly linearly with height. Experiments with cores of different sizes showed that increase in either the height or the diameter of the core causes decrease in imbibition and fractional oil-recovery rate. We also perform numerical simulations to model the observed imbibition. On the basis of the experimental measurements and numerical-simulation results, we propose a new scaling group that includes both the diameter and the height of the core. We show that the new scaling groups scale the recovery curves better than the traditional scaling group.


1976 ◽  
Vol 16 (05) ◽  
pp. 281-301 ◽  
Author(s):  
D.W. Peaceman

Abstract A fractured reservoir undergoing pressure depletion, evolution of gas at the top of the oil zone leads to an unstable density inversion in the fissures. The resulting convection brings heavy oil into contact with matrix blocks containing light oil, and results in the transfer of dissolved gas between matrix and fissure in the undersaturated region of the oil zone. To provide a better understanding of this process, numerical solutions were obtained to the differential equations that describe convection in a vertical fissure and include the matrix-fissure transfer. The numerical procedure is an extension of the method of characteristics for miscible displacement problems in two dimensions. The effect of gas evolution in the upper portion of the oil zone is also included in the numerical model. Calculations for a vertical fissure of rectangular shape, with an initial sinusoidal perturbation of an in verse density gradient, show an initial exponential growth of the perturbation that agrees well with that predicted from mathematical theory. Calculations predicted from mathematical theory. Calculations for a vertical fissure having a similar, but slightly tilted, rectangular shape and with an initial, correspondingly tilted, inverse density gradient, show that the effect of the matrix-fissure transfer parameters on the time for overturning can be parameters on the time for overturning can be correlated quite well by curves obtained from mathematical perturbation theory. The most realistic calculations were carried out for the same vertical fissure having a slightly tilted rectangular shape, with declining pressure at the apex and gas evolution included in the gassing zone. The relative saturation-pressure depression in the fissure below the gassing zone can be characterized as increasing as the square of the time, following an incubation period. For practical ranges of the matrix-fissure period. For practical ranges of the matrix-fissure transfer parameters investigated, it is concluded that saturation-pressure depression will be significant. A preliminary correlation for this Pb depression was obtained. The fissure thickness was found to affect the Pb depression significantly. Introduction Most fractured reservoirs of commercial interest are characterized by the existence of a system of high-conductivity fissures together with a large number of matrix blocks containing most of the oil. It has been recognized for some time that analysis of the behavior of a fractured reservoir must involve an understanding of the performance of single matrix blocks under the various environmental conditions that can exist in the fissures. However, it has only recently been recognized that a similar need exists for a better understanding of convective mixing taking place within the oil-filled portion of the fissure system. In a fractured reservoir undergoing pressure depletion, gas will be evolved at all points of the reservoir where the oil pressure has declined below the original saturation pressure. This depth interval is referred to as the gassing zone. Because of the high conductivity of the fracture, the gas in the fissures will segregate rapidly from the oil before reaching the producing wells and most, if not all, of it will join the expanding gas cap. At a sufficient depth, however, the oil pressure will still be higher than the saturation pressure, and the oil there remains in an undersaturated condition. In the gassing zone, gas evolves from the oil in both the fissures and the matrix. The oil left behind in the fissures within the gassing zone contains less dissolved gas and is heavier than the oil below it in the undersaturated zone. This density inversion can result in considerable convection within the highly conductive fissures. As a result of this convection, heavy oil containing less gas is transported downward through the fissures, placing it in contact with matrix blocks containing lighter oil with more dissolved gas. Transfer of dissolved gas from matrix to fissure takes place owing to molecular diffusion through the porous matrix rock; and even more transfer takes place owing to local convection within the matrix block induced by the density contrast between fissure and matrix oil. SPEJ p. 281


2013 ◽  
Vol 868 ◽  
pp. 535-541
Author(s):  
Hong Liu ◽  
Lin Wang ◽  
Yu Wu Zhou ◽  
Xi Nan Yu

The fractured low permeability reservoirs develop complex fracture network. As the of waterflooding recovery heightens, excessive high injection pressures and excessive water injection rate will result in open, initiation, propagation and coalescence of micro-fracture, connecting injection with production form the high permeability zone, which results in a one-way onrush of waterflooding, water cut in oil well water rise quickly, causing a severe oil well flooding and channeling, thereby reducing the ultimate oil recovery efficiency. The effect of the waterflooding seepage within natural fracture on fracture initiation is studied and analyzed here, applying the theory of rock fracture mechanics to analyze the interaction of fracture system for naturally fractured reservoirs in waterflooding developing process, studying the mechanical mechanism of opening, initiation, propagation and coalescence of natural fracture under injection pressure, which is important theoretical significance for studying the distribution law of fracture and defining appreciate water injection mode and injection pressure in the process of injection development of the naturally fractured reservoir and for delaying the directivity water break-through and water flooding rate of oil well in the process of injection development.


Sign in / Sign up

Export Citation Format

Share Document