Influence of Silica Fume on High-Performance Concrete

2014 ◽  
Vol 670-671 ◽  
pp. 437-440 ◽  
Author(s):  
Fan Wang ◽  
Shan Suo Zheng ◽  
Xiao Fei Wang

With the improvement of concrete materials and the emergence of new materials, adding silica fume to high-performance concrete (HPC) has been one of the important ways in concrete technology. In this paper, through experimental study on the mechanical performance of HPC with 5%, 10%, 15% and 20% silica fume replacing cement for different water-binder ratio, along with polycarboxylates high performance water-reducing admixture, silica fume has large effects on 28d compressive strength, split tensile strength and flexural strength of the HPC. Meanwhile, due to the different level of water-binder ratio, the relationship between split tensile strength, flexural strength and compressive strength is also obvious linear.

2014 ◽  
Vol 627 ◽  
pp. 445-448 ◽  
Author(s):  
Young Il Jang ◽  
Wan Shin Park ◽  
Sun Woong Kim ◽  
Song Hui Yun ◽  
Hyun Do Yun ◽  
...  

This paper addresses the influence of cold weather on the compressive strength of high performance concrete with silica fume under different curing days. Test variables of this study are weather condition (5°C, -5°C and-15°C) and different curing days (7days and 28 days). In this work, the specimen was designed a water-binder ratio of 0.34. One batches of concrete were prepared for each mixing hour, and the compressive strength of cylindrical concrete specimens was measured after 7 and 28 days. Test results for concrete compressive strength show that the concrete’s best mechanical performance occurred when there was the least difference between ambient temperature and concrete temperature, that is, during the later hours of the day in hot weather conditions.


2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3148 ◽  
Author(s):  
Hongyan Chu ◽  
Fengjuan Wang ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Danqian Wang

Ultra-high-performance concrete (UHPC) has received increasing attention in recent years due to its remarkable ductility, durability, and mechanical properties. However, the manufacture of UHPC can cause serious environmental issues. This work addresses the feasibility of using aeolian sand to produce UHPC, and the mix design, environmental impact, and mechanical characterization of UHPC are investigated. We designed the mix proportions of the UHPC according to the modified Andreasen and Andersen particle packing model. We studied the workability, microstructure, porosity, mechanical performance, and environmental impact of UHPC with three different water/binder ratios. The following findings were noted: (1) the compressive strength, flexural strength, and Young’s modulus of the designed UHPC samples were in the ranges of 163.9–207.0 MPa, 18.0–32.2 MPa, and 49.3–58.9 GPa, respectively; (2) the compressive strength, flexural strength, and Young’s modulus of the UHPC increased with a decrease in water/binder ratio and an increase in the steel fibre content; (3) the compressive strength–Young’s modulus correlation of the UHPC could be described by an exponential formula; (4) the environmental impact of UHPC can be improved by decreasing its water/binder ratio. These findings suggest that it is possible to use aeolian sand to manufacture UHPC, and this study promotes the application of aeolian sand for this purpose.


2013 ◽  
Vol 634-638 ◽  
pp. 2716-2719
Author(s):  
Wan Shin Park ◽  
Sung Ho Cho ◽  
Song Hui Yun ◽  
Jeong Eun Kim ◽  
Do Gyeum Kim ◽  
...  

The characteristics of the compressive strength and splitting tensile strength according to replacement ratio of the blast furnace slag were found in this study. The blast furnace slag was utilizes as the concrete mix-material and then, these results were compared with the basis presented in the international standards. In this study, cylinder made of concrete with water/binder ratio 0.34 and blast furnace slag replacement rate of 10%, 30%, 50%, and 70% were prepared to measure the compressive strength and spiting tensile strength. Test results indicate that The 28 days and 91 days compressive strength is affected by blast furnace slag replacement except specimen BS30 and the splitting tensile strength in specimen BS series is slightly larger than that of OPC except specimen BS 30.


2016 ◽  
Vol 62 (4) ◽  
pp. 95-108 ◽  
Author(s):  
M. Kępniak ◽  
P. Woyciechowski

AbstractThis paper addresses the tensile and flexural strength of HPC (high performance concrete). The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 437
Author(s):  
V R.Prasath Kumar ◽  
K Gunasekaran ◽  
Sreerag K P

High standing estimation of building materials utilized for development is a component of incredible concern. Coconut shell as a completely substitution in the place of coarse aggregate may totally effective for designers in construction industry. The coconut shell concrete is a light weight solid which may decrease the self-heap of a structure. The under taken project depends on inspecting attributes of coconut shell concrete when contrasted with conventional concrete. Coconut shells going from 10mm strainer and held on 6.3mm were considered to utilize for this study. For the current study M100 grade concrete is used to cast the specimens. The principle properties considered testing on coconut shell concrete and conventional concrete is compressive strength, split tensile strength and flexural strength. Examples were taken by supplanting coarse aggregate with coconut shells completely and cement is supplanted by silica fume with various extents of 5%, 10%, 15%, 20%, 25% for compressive strength test and tests were done at 3, 7, 28, 56 and 90 days of curing, it is observed that the ideal compressive strength outcomes were obtained at 10% of silica fume. The flexural strength and  split tensile strength of the specimens are calculated with replacement of cement by silica fume with  different extents of 0%, 5%, 10% and 15%, tests were done at 3, 7 and 28 days of curing. The optimum replacement percentage of cement by silica fume is 10% for compressive strength, split tensile and flexural strength. The primary principle is to lessen the utilization of natural aggregate by supplanting them with coconut shells and to decrease the density of concrete which makes concrete for simple dealing.  


2000 ◽  
Vol 27 (4) ◽  
pp. 620-627 ◽  
Author(s):  
A KH Kwan

A high concrete strength can be achieved by lowering the water/binder ratio and a high workability by adding a higher dosage of superplasticizer. However, a high-performance concrete with both high strength and high workability cannot be produced by just these means because lowering the water/binder ratio leads to lower workability and there is a limit to the increase in workability that can be attained by adding superplasticizer. To produce a high-strength, high-workability concrete, the concrete strength needs to be increased without lowering the water/binder ratio. This can be done by adding condensed silica fume. In this study, a series of trial mixing aimed at developing high-strength, self-consolidating concrete (mean cube strength >80 MPa and needs no compaction for consolidation) was carried out. Several mixes suitable for making such high-performance concrete have been developed and it was found that the addition of condensed silica fume may, under favourable conditions, increase not only the strength but also the workability of the concrete mix. Based on the trial mix results, charts for the design of high-strength, high-workability concrete mixes made of the studied constituents are presented.Key words: condensed silica fume, high-strength concrete, self-consolidating concrete.


2020 ◽  
Vol 8 (6) ◽  
pp. 263-269
Author(s):  
Jigyasa Shukla ◽  
Harsh Gupta

This paper present the study of various strength such as compressive strength, split tensile strength and flexural strength during 7 and 28 day. It is construct the specimens size 15cm X 15cm X 15cm for testing purpose which depend upon the size of aggregate. Test results are indicated that strength performance of concrete well as in durability aspect are improved using of Silica fume


2008 ◽  
Vol 385-387 ◽  
pp. 701-704 ◽  
Author(s):  
Jung Jun Park ◽  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Sung Wook Kim

Silica fume constitutes an element of extreme importance in improving the strength and fluidity of UHPC. The adopted amount of silica fume generally is generally exceeding 25% of cement in weight but the influence of this amount on the properties of UHPC is still remaining as a domain to be investigated. Accordingly, this paper investigates the effects of the amount of silica fume on the mechanical characteristics of the fluidity, compressive strength, elastic modulus and flexural strength and on the micro structure of UHPC by means of SEM and MIP. Results revealed that adequate amount of silica fume is improving the fluidity and strength. MIP tests demonstrated that such improvement is brought by the increase of hydrates due to the pozzolan reaction and the effective densification inside concrete due to the filler. It seemed also that similar mechanical characteristics can be obtained for a volumetric ratio to cement ranging between 10 and 25%.


Sign in / Sign up

Export Citation Format

Share Document