Self-Healing Epoxy Composites – Part II: Healing Performance

2013 ◽  
Vol 716 ◽  
pp. 387-390
Author(s):  
Tao Yin ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

Epoxy composites were provided with healing capability by pre-dispersing a novel repair system in the composites matrix cured by 2-ethyl-4-methylimidazole (2E4MIm). The healing agent consisted of ureaformaldehyde microcapsules containing epoxy and latent hardener CuBr2(2-MeIm)4 (the complex of CuBr2 and 2-methylimidazole). Single-edge notched bending (SENB) test were conducted to evaluate fracture toughness of the composites before and after healing. Moreover, healing efficiency was studied as a function of the content of the two-component healing agents. It was found that a healing efficiency of 173% relative to the fracture toughness of virgin composites was obtained in the case of 15 wt% epoxy-loaded microcapsules and 3 wt% CuBr2(2-MeIm)4.

2021 ◽  
pp. 105678952110112
Author(s):  
Kaihang Han ◽  
Jiann-Wen Woody Ju ◽  
Yinghui Zhu ◽  
Hao Zhang ◽  
Tien-Shu Chang ◽  
...  

The cementitious composites with microencapsulated healing agents have become a class of hotspots in the field of construction materials, and they have very broad application prospects and research values. The in-depth study on multi-scale mechanical behaviors of microencapsulated self-healing cementitious composites is critical to quantitatively account for the mechanical response during the damage-healing process. This paper proposes a three-dimensional evolutionary micromechanical model to quantitatively explain the self-healing effects of microencapsulated healing agents on the damage induced by microcracks. By virtue of the proposed 3 D micromechanical model, the evolutionary domains of microcrack growth (DMG) and corresponding compliances of the initial, extended and repaired phases are obtained. Moreover, the elaborate studies are conducted to inspect the effects of various system parameters involving the healing efficiency, fracture toughness and preloading-induced damage degrees on the compliances and stress-strain relations. The results indicate that relatively significant healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will lead to a higher compressive strength and stiffness. However, the specimen will break owing to the nucleated microcracks rather than the repaired kinked microcracks. Further, excessive higher values of healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will not affect the compressive strength of the cementitious composites. Therefore, a stronger matrix is required. To achieve the desired healing effects, the specific parameters of both the matrix and microcapsules should be selected prudently.


2011 ◽  
Vol 9 (70) ◽  
pp. 1020-1028 ◽  
Author(s):  
A. R. Hamilton ◽  
N. R. Sottos ◽  
S. R. White

An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen.


2013 ◽  
Vol 716 ◽  
pp. 383-386 ◽  
Author(s):  
Tao Yin ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

This paper reports a study of self-healing epoxy composites. The healing agent was a two-component one synthesized in the authors laboratory, which consisted of epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-MeIm)4 (the complex of CuBr2 and 2-methylimidazole) as the latent hardener. Both the microcapsules and the matching catalyst were pre-embedded and pre-dissolved in the composites matrix cured by 2-ethyl-4-methylimidazole (2E4MIm), respectively. The data of curing kinetics show that the latent hardener CuBr2(2-MeIm)4 is not affected during the curing process of 2 h at 80°C, 2 h at 120°C and 2 h at 140°C, and heat deformation temperature of composites consisting of 2 wt% CuBr2(2-MeIm)4 and 5 wt% mcirocapsules cured at the same curing process is 180.2°C.


2010 ◽  
Vol 20 (1) ◽  
pp. 015024 ◽  
Author(s):  
Yan Chao Yuan ◽  
Yueping Ye ◽  
Min Zhi Rong ◽  
Haibin Chen ◽  
Jingshen Wu ◽  
...  

2014 ◽  
Vol 636 ◽  
pp. 73-77 ◽  
Author(s):  
Xin Hua Yuan ◽  
Qiu Su ◽  
Li Yin Han ◽  
Qian Zhang ◽  
Yan Qiu Chen ◽  
...  

Microencapsulated E-51 epoxy resin healing agent and phthalic anhydride latent curing agent were incorporated into E-44 epoxy matrix to prepare self-healing epoxy composites. When cracks were initiated or propagated in the composites, the microcapsules would be damaged and the healing agent released. As a result, the crack plane was healed through curing reaction of the released epoxy latent curing agent. In the paper, PUF/E-51 microcapsules were prepared by in-situ polymerization. The mechanical properties of the epoxy composites filled with the self-healing system were evaluated. The impact strength and self-healing efficiency of the composites are measured using a Charpy Impact Tester. Both the virgin and healed impact strength depends strongly on the concentration of microcapsules added into the epoxy matrix. Fracture of the neat epoxy is brittle, exhibiting a mirror fracture surface. Addition of PUF/E-51 microcapsules decreases the impact strength and induces a change in the fracture plane morphology to hackle markings. In the case of 8.0 wt% microcapsules and 3.0 wt% latent hardener, the self-healing epoxy exhibited 81.5% recovery of its original fracture toughness.


2020 ◽  
Vol 62 (1) ◽  
pp. 63-85
Author(s):  
Rahul Roy ◽  
Emanuele Rossi ◽  
Johan Silfwerbrand ◽  
Henk Jonkers

AbstractCrack formation in concrete structures due to various load and non-load factors leading to degradation of service life is very common. Repair and maintenance operations are, therefore, necessary to prevent cracks propagating and reducing the service life of the structures. Accessibility to affected areas can, however, be difficult as the reconstruction and maintenance of concrete buildings are expensive in labour and capital. Autonomous healing by encapsulated bacteria-based self-healing agents is a possible solution. During this process, the bacteria are released from a broken capsule or triggered by water and oxygen access. However, its performance and reliability depend on continuous water supply, protection against the harsh environment, and densification of the cementitious matrix for the bacteria to act. There are vast methods of encapsulating bacteria and the most common carriers used are: encapsulation in polymeric materials, lightweight aggregates, cementitious materials, special minerals, nanomaterials, and waste-derived biomass. Self-healing efficiency of these encapsulated technologies can be assessed through many experimental methodologies according to the literature. These experimental evaluations are performed in terms of quantification of crackhealing, recovery of durability and mechanical properties (macro-level test) and characterization of precipitated crystals by healing agent (micro-level test). Until now, quantification of crack-healing by light microscopy revealed maximum crack width of 1.80mm healed. All research methods available for assesing self-healing efficiency of bacteria-based healing agents are worth reviewing in order to include a coherent, if not standardized framework testing system and a comparative evaluation for a novel incorporated bacteria-based healing agent.


2017 ◽  
Vol 12 (3) ◽  
pp. 103-114
Author(s):  
Alan Richardson ◽  
Leon Amess ◽  
Simon Neville ◽  
Christopher Walton

This self repair system is based upon harmless ground borne bacteria as the self-healing agent. The bacteria are activated after the concrete is cracked and the bacterial spores are exposed to moisture and air. The bacterial reproduction process creates a calcite by-product which fills the cracks in the concrete. By sealing the cracks in concrete, an effective barrier to air or liquid borne deleterious materials are formed and as a consequence of this, enhanced durability is achieved in the structure, resulting in lower life cycle costs. The concrete/mortar prisms were cracked and tested for water flow. They were then left for 56 days to heal and were subject to a test for water tightness. Healing was observed and a reduced water flow (74% and 32% healed) measured with the healed samples when compared to the specimens that were cracked and subjected to a water flow test without any healing agent. The number of samples were limited and a larger scale test is recommended for further work; however, this is a proof of concept of the process of healing and testing.


2011 ◽  
Vol 33 (4) ◽  
pp. 497-505 ◽  
Author(s):  
Kim Van Tittelboom ◽  
Nele De Belie ◽  
Denis Van Loo ◽  
Patric Jacobs

2008 ◽  
Vol 47-50 ◽  
pp. 282-285 ◽  
Author(s):  
Tao Yin ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

To provide epoxy based composites with self-healing ability, two-component healing system consisting of urea-formaldehyde walled microcapsules containing epoxy (30~70µm in diameter) and CuBr2(2-MeIm)4 (the complex of CuBr2 and 2-methylimidazole) latent hardener was synthesized. When cracks were initiated or propagated in the composites, the neighbor micro-encapsulated epoxy would be damaged and released. As the latent hardener is soluble in epoxy, it can be well dispersed in epoxy composites during composites manufacturing, and hence activate the released epoxy wherever it is. As a result, repair of the cracked sites is completed through curing of the released epoxy. The present work indicated that the plain weave glass fabric laminates using the above self-healing epoxy as the matrix have been provided with self-healing capability.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4164 ◽  
Author(s):  
Hayeon Kim ◽  
Hyeongmin Son ◽  
Joonho Seo ◽  
H. K. Lee

The present study evaluated the self-healing efficiency and mechanical properties of mortar specimens incorporating a bio-carrier as a self-healing agent. The bio-carrier was produced by immobilizing ureolytic bacteria isolated from seawater in bottom ash, followed by surface coating with cement powder to prevent loss of nutrients during the mixing process. Five types of specimens were prepared with two methods of incorporating bacteria, and were water cured for 28 days. To investigate the healing ratio, the specimens with predefined cracks were treated by applying a wet–dry cycle in three different conditions, i.e., seawater, tap water, and air for 28 days. In addition, a compression test and a mercury intrusion porosimetry analysis of the specimens were performed to evaluate their physico-mechanical properties. The obtained results showed that the specimen incorporating the bio-carrier had higher compressive strength than the specimen incorporating vegetative cells. Furthermore, the highest healing ratio was observed in specimens incorporating the bio-carrier. This phenomenon could be ascribed by the enhanced bacterial viability by the bio-carrier.


Sign in / Sign up

Export Citation Format

Share Document