Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent

2011 ◽  
Vol 33 (4) ◽  
pp. 497-505 ◽  
Author(s):  
Kim Van Tittelboom ◽  
Nele De Belie ◽  
Denis Van Loo ◽  
Patric Jacobs
2020 ◽  
Vol 62 (1) ◽  
pp. 63-85
Author(s):  
Rahul Roy ◽  
Emanuele Rossi ◽  
Johan Silfwerbrand ◽  
Henk Jonkers

AbstractCrack formation in concrete structures due to various load and non-load factors leading to degradation of service life is very common. Repair and maintenance operations are, therefore, necessary to prevent cracks propagating and reducing the service life of the structures. Accessibility to affected areas can, however, be difficult as the reconstruction and maintenance of concrete buildings are expensive in labour and capital. Autonomous healing by encapsulated bacteria-based self-healing agents is a possible solution. During this process, the bacteria are released from a broken capsule or triggered by water and oxygen access. However, its performance and reliability depend on continuous water supply, protection against the harsh environment, and densification of the cementitious matrix for the bacteria to act. There are vast methods of encapsulating bacteria and the most common carriers used are: encapsulation in polymeric materials, lightweight aggregates, cementitious materials, special minerals, nanomaterials, and waste-derived biomass. Self-healing efficiency of these encapsulated technologies can be assessed through many experimental methodologies according to the literature. These experimental evaluations are performed in terms of quantification of crackhealing, recovery of durability and mechanical properties (macro-level test) and characterization of precipitated crystals by healing agent (micro-level test). Until now, quantification of crack-healing by light microscopy revealed maximum crack width of 1.80mm healed. All research methods available for assesing self-healing efficiency of bacteria-based healing agents are worth reviewing in order to include a coherent, if not standardized framework testing system and a comparative evaluation for a novel incorporated bacteria-based healing agent.


2020 ◽  
Vol 996 ◽  
pp. 104-109 ◽  
Author(s):  
Zhen Hong Yang ◽  
Xian Feng Wang ◽  
Ning Xu Han ◽  
Feng Xing

In this study, Na2CO3 solution as a self-healing agent was impregnated in LWA for autonomic self-healing on cracked cementitious material. The results showed that under the joint action of expansive agent, crystalline additive, phosphate and carbonate, the crack area showed a high self-healing efficiency (close to 70%) after curing in the still water 28d. SEM-EDS test results showed that in addition to ettringite and C-S-H/C-A-S-H, there was also a large amount of CaCO3 crystal in the depths of the crack.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2021 ◽  
pp. 105678952110112
Author(s):  
Kaihang Han ◽  
Jiann-Wen Woody Ju ◽  
Yinghui Zhu ◽  
Hao Zhang ◽  
Tien-Shu Chang ◽  
...  

The cementitious composites with microencapsulated healing agents have become a class of hotspots in the field of construction materials, and they have very broad application prospects and research values. The in-depth study on multi-scale mechanical behaviors of microencapsulated self-healing cementitious composites is critical to quantitatively account for the mechanical response during the damage-healing process. This paper proposes a three-dimensional evolutionary micromechanical model to quantitatively explain the self-healing effects of microencapsulated healing agents on the damage induced by microcracks. By virtue of the proposed 3 D micromechanical model, the evolutionary domains of microcrack growth (DMG) and corresponding compliances of the initial, extended and repaired phases are obtained. Moreover, the elaborate studies are conducted to inspect the effects of various system parameters involving the healing efficiency, fracture toughness and preloading-induced damage degrees on the compliances and stress-strain relations. The results indicate that relatively significant healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will lead to a higher compressive strength and stiffness. However, the specimen will break owing to the nucleated microcracks rather than the repaired kinked microcracks. Further, excessive higher values of healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will not affect the compressive strength of the cementitious composites. Therefore, a stronger matrix is required. To achieve the desired healing effects, the specific parameters of both the matrix and microcapsules should be selected prudently.


2011 ◽  
Vol 374-377 ◽  
pp. 1899-1903
Author(s):  
Xiong Zhou Yuan ◽  
Wei Sun ◽  
Xiao Bao Zuo

Based on detailed consideration of the autonomic healing concept of microencapsulated healing agent, micro- bacteria induced calcite and shape memory alloys, our research team proposed a new self-healing technique coupled with of SMA and heat-melt adhesive. In this article, chemical stability and bonding strength with cementitious materials of PA heat-melt adhesive were tested. Experimental results show that PA heat-melt adhesive may contain the ability being used in self-healing techniques coupled with SMA.


2018 ◽  
Vol 30 (7) ◽  
pp. 04018145 ◽  
Author(s):  
B. Van Belleghem ◽  
E. Gruyaert ◽  
K. Van Tittelboom ◽  
W. Moerman ◽  
B. Dekeyser ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4437
Author(s):  
Shashank Gupta ◽  
Salam Al-Obaidi ◽  
Liberato Ferrara

Concrete and cement-based materials inherently possess an autogenous self-healing capacity. Despite the huge amount of literature on the topic, self-healing concepts still fail to consistently enter design strategies able to effectively quantify their benefits on structural performance. This study aims to develop quantitative relationships through statistical models and artificial neural network (ANN) by establishing a correlation between the mix proportions, exposure type and time, and width of the initial crack against suitably defined self-healing indices (SHI), quantifying the recovery of material performance. Furthermore, it is intended to pave the way towards consistent incorporation of self-healing concepts into durability-based design approaches for reinforced concrete structures, aimed at quantifying, with reliable confidence, the benefits in terms of slower degradation of the structural performance and extension of the service lifespan. It has been observed that the exposure type, crack width and presence of healing stimulators such as crystalline admixtures has the most significant effect on enhancing SHI and hence self-healing efficiency. However, other parameters, such as the amount of fibers and Supplementary Cementitious Materials have less impact on the autogenous self-healing. The study proposes, through suitably built design charts and ANN analysis, a straightforward input–output model to quickly predict and evaluate, and hence “design”, the self-healing efficiency of cement-based materials.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3711
Author(s):  
Mohammad Fahimizadeh ◽  
Ayesha Diane Abeyratne ◽  
Lee Sui Mae ◽  
R. K. Raman Singh ◽  
Pooria Pasbakhsh

Crack formation in concrete is one of the main reasons for concrete degradation. Calcium alginate capsules containing biological self-healing agents for cementitious materials were studied for the self-healing of cement paste and mortars through in vitro characterizations such as healing agent survivability and retention, material stability, and biomineralization, followed by in situ self-healing observation in pre-cracked cement paste and mortar specimens. Our results showed that bacterial spores fully survived the encapsulation process and would not leach out during cement mixing. Encapsulated bacteria precipitated CaCO3 when exposed to water, oxygen, and calcium under alkaline conditions by releasing CO32− ions into the cement environment. Capsule rupture is not required for the initiation of the healing process, but exposure to the right conditions are. After 56 days of wet–dry cycles, the capsules resulted in flexural strength regain as high as 39.6% for the cement mortar and 32.5% for the cement paste specimens. Full crack closure was observed at 28 days for cement mortars with the healing agents. The self-healing system acted as a biological CO32− pump that can keep the bio-agents retained, protected, and active for up to 56 days of wet-dry incubation. This promising self-healing strategy requires further research and optimization.


Author(s):  
Luis Bonilla ◽  
Marwa Hassan ◽  
Hassan Noorvand ◽  
Tyson Rupnow ◽  
Ayman Okeil

The self-healing efficiency of cementitious materials was improved by developing several strategies to provide and deliver the products (healing agents) needed for cracks to self-repair. This study evaluated the self-healing efficiency of microcapsules filled with calcium nitrate in reinforced and unreinforced concrete beams. The structural behavior and healing efficiency were evaluated by measuring and then comparing the initial stiffness, peak strength, and deformation with posthealing measurements. Furthermore, as part of this study, crack monitoring was conducted to evaluate crack healing over time. Then characterization analysis was carried out with energy dispersive X-ray spectroscopy to quantify the healing components in the cracked areas. Results showed that the air content in samples containing microcapsules was two times higher than that in the control samples. Furthermore, addition of microcapsules lowered the flexural strength of concrete beams compared with that of the control samples. A positive stiffness recovery was recorded for all groups, with and without microcapsules or steel. Control samples showed the lowest stiffness recovery; however, the use of steel with microcapsules presented a superior healing efficiency and improved stiffness recovery significantly by 38%. Results from image analysis showed that crack widths did not completely heal for the control samples, while using microcapsules allowed the cracked widths to heal more efficiently. The best observed performance was for the microcapsules–steel group, which yielded 100% healing of the cracks.


Sign in / Sign up

Export Citation Format

Share Document