Study on Single-Axis Tracking PV System Measurement

2013 ◽  
Vol 724-725 ◽  
pp. 185-189
Author(s):  
Ying Hua Dong ◽  
Jing Sheng Huang ◽  
Mei Yin Liu ◽  
Lei Cao

In this paper, the precision test method of single-axis PV track device is proposed by analyzing generator mechanism of PV module. In the process of the rotation of single-axis track device, the change of corner in space is considered. Suitable coordinate system is built in order to evaluate track device precision which normal vector of PV module and solar direction vector can be decomposed in this coordinate system. Meanwhile, the comparison on the tracking precision of PV track devices tested by different devices is made and the test uncertainty is researched as well. Experimental results verify the effectiveness of the method which is proposed in this paper.

2016 ◽  
Vol 40 (4) ◽  
pp. 481-489
Author(s):  
Shu-Tsung Hsu ◽  
Yean-San Long ◽  
Teng-Chun Wu

The photovoltaic (PV) industry is expanding rapidly to meet the growing renewable-energy demands globally. The failure-rate analysis indicated that a large portion of the accelerated PV module qualification failures were related to the failure of PV cell itself, which was leading to the yield loss of PV products during shipping or transportation. Therefore, the damaged cell (or module) caused by shipping is always one of the serious problems to impact the long-term reliability of PV product. This paper aims to propose a new test method of reliability evaluation for shipping pallet of solar product. The first scenario is the test pallet shipped in fab (e.g., fork-lift truck or hand-pallet truck). The second scenario is the test pallet transported from fab to fab by different vehicle (e.g., truck, train, aircraft, and shipboard). Consequently, detailed results were applied to SEMI Doc. 5431 and released as SEMI PV56-1214 by voting in December 2014. The solar cell/module/system makers and buyers, or any other party interested like package design, can thus have a common document to refer to when desired.


Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


2015 ◽  
Vol 785 ◽  
pp. 106-110
Author(s):  
M.N.M. Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim ◽  
Kamarulazhar Daud

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).


Author(s):  
Mohamad Fakrie Mohamad Ali ◽  
◽  
Mohd Noor Abdullah ◽  

This paper presents the feasibility study of the technical and economic performances of grid-connected photovoltaic (PV) system for selected rooftops in Universiti Tun Hussein Onn Malaysia (UTHM). The analysis of the electricity consumption and electricity bill data of UTHM campus show that the monthly electricity usage in UTHM campus is very high and expensive. The main purpose of this project is to reduce the annual electricity consumption and electricity bill of UTHM with Net Energy Metering (NEM) scheme. Therefore, the grid-connected PV system has been proposed at Dewan Sultan Ibrahim (DSI), Tunku Tun Aminah Library (TTAL), Fakulti Kejuruteraan Awam dan Alam Bina (FKAAS) and F2 buildings UTHM by using three types of PV modules which are mono-crystalline silicon (Mono-Si), poly-crystalline silicon (Poly-Si) and Thin-film. These three PV modules were modeled, simulated and calculated using Helioscope software with the capacity of 2,166.40kWp, 2,046.20kWp and 1,845kWp respectively for the total rooftop area of 190,302.9 ft². The economic analysis was conducted on the chosen three installed PV modules using RETScreen software. As a result, the Mono-Si showed the best PV module that can produce 2,332,327.40 kWh of PV energy, 4.4% of CO₂ reduction, 9.3 years of payback period considering 21 years of the contractual period and profit of RM4,932,274.58 for 11.7 years after payback period. Moreover, the proposed installation of 2,166.40kWp (Mono-SI PV module) can reduce the annual electricity bill and CO2 emission of 3.6% (RM421,561.93) and 4.4% (1,851.40 tCO₂) compared to the system without PV system.


2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


2021 ◽  
Vol 297 ◽  
pp. 01008
Author(s):  
Ibtissam Lamaamar ◽  
Amine Tilioua ◽  
Zaineb Benzaid ◽  
Abdelouahed Ait Msaad ◽  
Moulay Ahmed Hamdi Alaoui

The high operating temperature of the photovoltaic (PV) modules decreases significantly its efficiency. The integration of phase change material (PCM) is one of the feasible techniques for reducing the operating temperature of the PV module. A numerical simulation of the PV module with PCM and without PCM has been realized. The thermal behavior of the PV module was evaluated at the melting and solidification processes of PCM. The results show that the integration of RT35HC PCM with a thickness of 4 cm reduces the temperature of the PV module by 8 °C compared to the reference module. Compared the RT35 and RT35HC, we found that the latent heat has a significant effect on the PCM thermal comportment. Furthermore, it has been found that the thermal resistance of the layers plays an important role to dissipate the heat from the PV cells to the PCM layer, consequently improving the heat transfer inside the PV/PCM system.


Author(s):  
Murari Lal Azad ◽  
Pradip Kumar Sadhu ◽  
P Arvind ◽  
Anagh Gupta ◽  
Tuhin Bandyopadhyay ◽  
...  

<p class="Abstract">Distributed Generation source have wide application due to their phenomenal advantages. These sources include Photovoltaic (PV) cells producing DC voltage at their output that connects the network through a power electronic interface. PV characteristics, on the other hand, illustrate the fact that maximum power can be extracted at the optimal operating point depending upon the solar radiation and ambient temperature. In order to keep   the PV module at its optimal operating point, a DC-DC converter is often used between a PV module and inverter. Consequently, Maximum power point trackers (MPPT) grab the foremost position in the efficiency analysis of the global PV system. Among the several MPPT algorithms, Incremental Conduction technique isemphasised upon as it is extremely simple in implementation within electronic programmable circuits. This paper incorporates the MPPT model using a PV module that always works in its optimal operating point. Design and experimental results of a small prototype of MPPT is presented here based on the Simulink model to verify the advantages of proposed integrated system.</p>


Sign in / Sign up

Export Citation Format

Share Document