scholarly journals Feasibility Study of the Technical and Economic Performance of Grid-Connected PV System for Selected Rooftops in UTHM

Author(s):  
Mohamad Fakrie Mohamad Ali ◽  
◽  
Mohd Noor Abdullah ◽  

This paper presents the feasibility study of the technical and economic performances of grid-connected photovoltaic (PV) system for selected rooftops in Universiti Tun Hussein Onn Malaysia (UTHM). The analysis of the electricity consumption and electricity bill data of UTHM campus show that the monthly electricity usage in UTHM campus is very high and expensive. The main purpose of this project is to reduce the annual electricity consumption and electricity bill of UTHM with Net Energy Metering (NEM) scheme. Therefore, the grid-connected PV system has been proposed at Dewan Sultan Ibrahim (DSI), Tunku Tun Aminah Library (TTAL), Fakulti Kejuruteraan Awam dan Alam Bina (FKAAS) and F2 buildings UTHM by using three types of PV modules which are mono-crystalline silicon (Mono-Si), poly-crystalline silicon (Poly-Si) and Thin-film. These three PV modules were modeled, simulated and calculated using Helioscope software with the capacity of 2,166.40kWp, 2,046.20kWp and 1,845kWp respectively for the total rooftop area of 190,302.9 ft². The economic analysis was conducted on the chosen three installed PV modules using RETScreen software. As a result, the Mono-Si showed the best PV module that can produce 2,332,327.40 kWh of PV energy, 4.4% of CO₂ reduction, 9.3 years of payback period considering 21 years of the contractual period and profit of RM4,932,274.58 for 11.7 years after payback period. Moreover, the proposed installation of 2,166.40kWp (Mono-SI PV module) can reduce the annual electricity bill and CO2 emission of 3.6% (RM421,561.93) and 4.4% (1,851.40 tCO₂) compared to the system without PV system.

2018 ◽  
Vol 7 (3) ◽  
pp. 450-457
Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

Malaysia has moved forward by promoting the use of renewable energy such as solar PV to the public to reduce dependency on fossil fuel-based energy resources. Due to the concern on high electricity bill, Universiti Malaysia Perlis (UniMAP) is keen to install solar PV system as an initiative for energy saving program to its buildings. The objective of this paper is to technically and economically evaluate the different sizing of solar PV system for university buildings under the Net Energy Metering (NEM) scheme. The study involves gathering of solar energy resource information, daily load profile of the buildings, sizing PV array together with grid-connected inverters and the simulation of the designed system using PVsyst software. Based on the results obtained, the amount of solar energy generated and used by the load per year is between 5.10% and 20.20% from the total annual load demand. Almost all solar energy generated from the system will be self-consumed by the loads. In terms of profit gained, the university could reduce its electricity bill approximately between a quarter to one million ringgit per annum depending on the sizing capacity. Beneficially, the university could contribute to the environmental conservation by avoiding up to 2,000 tons of CO2 emission per year.


2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


2018 ◽  
Vol 8 (4) ◽  
pp. 3168-3171
Author(s):  
F. Mavromatakis ◽  
G. Viskadouros ◽  
H. Haritaki ◽  
G. Xanthos

The latest measure for the development of photovoltaics in Greece utilizes the net-metering scheme. Under this scheme the energy produced by a PV system may be either consumed by the local loads or be injected to the grid. The final cost reported in an electricity bill depends upon the energy produced by the PV system, the energy absorbed from the grid and the energy injected to the grid. Consequently, the actual electricity consumption profile is important to estimate the benefit from the use of this renewable energy source. The state latest statistics in Greece for households reveal that the typical electrical consumption is 3750 kWh while 10244 kWh are consumed in the form of thermal energy. We adopt in our calculations the above amount of electrical energy but assume four different scenarios. These different hourly profiles are examined to study the effects of synchronization upon the final cost of energy. The above scenarios are applied to areas in different climate zones in Greece (Heraklion, Athens and Thessaloniki) to examine the dependence of the hourly profiles and the solar potential upon the financial data with respect to internal rate of return, payback times, net present value and the levelized cost of energy. These parameters are affected by the initial system cost and the financial parameters.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4389
Author(s):  
Juhee Jang ◽  
Kyungsoo Lee

Bifacial photovoltaic (PV) modules can take advantage of rear-surface irradiance, enabling them to produce more energy compared with monofacial PV modules. However, the performance of bifacial PV modules depends on the irradiance at the rear side, which is strongly affected by the installation setup and environmental conditions. In this study, we experiment with a bifacial PV module and a bifacial PV system by varying the size of the reflective material, vertical installation, temperature mismatch, and concentration of particulate matter (PM), using three testbeds. From our analyses, we found that the specific yield increased by 1.6% when the reflective material size doubled. When the PV module was installed vertically, the reduction of power due to the shadow effect occurred, and thus the maximum current was 14.3% lower than the short-circuit current. We also observed a maximum average surface temperature mismatch of 2.19 °C depending on the position of the modules when they were composed in a row. Finally, in clear sky conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain increased by 4%. In overcast conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain decreased by 0.9%.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ankita Gaur ◽  
G. N. Tiwari

The exergoeconomic and enviroeconomic analysis of semitransparent and opaque photovoltaic (PV) modules based on different kinds of solar cells are presented. Annual electricity and net present values have also been computed for the composite climatic conditions of New Delhi, India. Irrespective of the solar cell type, the semitransparent PV modules have shown higher net energy loss rate (Len) and net exergy loss rate (Lex) compared to the opaque ones. Among all types of solar modules, the one based on c-Si, exhibited the minimum Len and Lex. Compared to the opaque ones, the semitransparent PV modules have shown higher CO2 reduction giving higher environmental cost reduction per annum and the highest environmental cost reduction per annum was found for a-Si PV module.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241927
Author(s):  
Syed Zahurul Islam ◽  
Mohammad Lutfi Othman ◽  
Muhammad Saufi ◽  
Rosli Omar ◽  
Arash Toudeshki ◽  
...  

This study analyzes the performance of two PV modules, amorphous silicon (a-Si) and crystalline silicon (c-Si) and predicts energy yield, which can be seen as facilitation to achieve the target of 35% reduction of greenhouse gases emission by 2030. Malaysia Energy Commission recommends crystalline PV modules for net energy metering (NEM), but the climate regime is a concern for output power and efficiency. Based on rainfall and irradiance data, this study aims to categorize the climate of peninsular Malaysia into rainy and dry seasons; and then the performance of the two modules are evaluated under the dry season. A new mathematical model is developed to predict energy yield and the results are validated through experimental and systematic error analysis. The parameters are collected using a self-developed ZigBeePRO-based wireless system with the rate of 3 samples/min over a period of five days. The results unveil that efficiency is inversely proportional to the irradiance due to negative temperature coefficient for crystalline modules. For this phenomenon, efficiency of c-Si (9.8%) is found always higher than a-Si (3.5%). However, a-Si shows better shadow tolerance compared to c-Si, observed from a lesser decrease rate in efficiency of the former with the increase in irradiance. Due to better spectrum response and temperature coefficient, a-Si shows greater performance on output power efficiency (OPE), performance ratio (PR), and yield factor. From the regression analysis, it is found that the coefficient of determination (R2) is between 0.7179 and 0.9611. The energy from the proposed model indicates that a-Si yields 15.07% higher kWh than c-Si when luminance for recorded days is 70% medium and 30% high. This study is important to determine the highest percentage of energy yield and to get faster NEM payback period, where as of now, there is no such model to indicate seasonal energy yield in Malaysia.


ACTA IMEKO ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 93
Author(s):  
Giovanni Bucci ◽  
Fabrizio Ciancetta ◽  
Edoardo Fiorucci ◽  
Antonio Delle Femine

<p class="Abstract">Shading is one of the most critical factors that produces a reduction in power in photovoltaic (PV) modules. The main causes of shading are related to cloud cover; local specificity; natural characteristics; building and other civil works; and the presence of the PV system itself. A reduction in overall radiation produces a consequent reduction in electric power. Another more problematic effect is associated with the partial shading of the PV modules. The shaded cell behaves as a load, dissipating energy and increasing its temperature. This effect can involve irreversible changes to the PV module, with a decrease in performance that can even cause the destruction of the shaded cell.</p><p>The main aim of this work is the development of a testing procedure for the performance evaluation of commercial PV modules in the presence of partial shading on one cell. Tests were carried out using thermographic and electric measurements and by varying the shading levels according to IEC standards. Shading up to total darkening is achieved by means of a number of filters that reduce the direct solar irradiance.</p><p>As a case study, a complete characterisation of a 180 Wp polycrystalline PV module was performed according to the proposed testing procedure, showing that high temperatures can be measured on the shaded PV module surface even if only 50 % of the surface of one cell of the PV module is darkened.</p>


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3037 ◽  
Author(s):  
Xiaobo Xu ◽  
Xiaocheng Zhang ◽  
Zhaowu Huang ◽  
Shaoyou Xie ◽  
Wenping Gu ◽  
...  

In the photovoltaic (PV) field, the outdoor evaluation of a PV system is quite complex, due to the variations of temperature and irradiance. In fact, the diagnosis of the PV modules is extremely required in order to maintain the optimum performance. In this paper, an artificial neural network (ANN) is proposed to build and train the model, and evaluate the PV module performance by mean bias error, mean square error and the regression analysis. We take temperature, irradiance and a specific voltage for input, and a specific current value for output, repeat several times in order to obtain an I-V curve. The main feature lies to the data-driven black-box method, with the ignorance of any analytical equations and hence the conventional five parameters (serial resistance, shunt resistance, non-ideal factor, reverse saturation current, and photon current). The ANN is able to predict the I-V curves of the Si PV module at arbitrary irradiance and temperature. Finally, the proposed algorithm has proved to be valid in terms of comparison with the testing dataset.


2020 ◽  
Vol 10 (16) ◽  
pp. 5465 ◽  
Author(s):  
Ilke Celik ◽  
Marina Lunardi ◽  
Austen Frederickson ◽  
Richard Corkish

This work provides economic and environmental analyses of transportation-related impacts of different photovoltaic (PV) module technologies at their end-of-life (EoL) phase. Our results show that crystalline silicon (c-Si) modules are the most economical PV technology (United States Dollars (USD) 2.3 per 1 m2 PV module (or 0.87 ¢/W) for transporting in the United States for 1000 km). Furthermore, we found that the financial costs of truck transportation for PV modules for 2000 km are only slightly more than for 1000 km. CO2-eq emissions associated with transport are a significant share of the EoL impacts, and those for copper indium gallium selenide (CIGS) PV modules are always higher than for c-Si and CdTe PV. Transportation associated CO2-eq emissions contribute 47%, 28%, and 40% of overall EoL impacts of c-Si, CdTe, and CIGS PV wastes, respectively. Overall, gasoline-fueled trucks have 65–95% more environmental impacts compared to alternative transportation options of the diesel and electric trains and ships. Finally, a hotspot analysis on the entire life cycle CO2-eq emissions of different PV technologies showed that the EoL phase-related emissions are more significant for thin-film PV modules compared to crystalline silicon PV technologies and, so, more environmentally friendly material recovery methods should be developed for thin film PV.


Author(s):  
Y.M. Irwan ◽  
Z. Syafiqah ◽  
A.R. Amelia ◽  
M. Irwanto ◽  
W.Z. Leow ◽  
...  

<p>This paper presents an alternative method to reduce the monthly electricity bill at Centre of Excellence for Renewable Energy (CERE) which is by installing a stand-alone photovoltaic (PV) system. In the stand-alone PV system, apart from the PV module and loads, other components in the system such as battery, charge controller, inverter and protection device are categorized under Balance of System (BOS) component. In order for the loads to receive adequate energy to operate, the overall system must be sized through calculations due to find the optimum combination. This sizing will determine the amount of each component that needed in the system. The hardware is setup in front of CERE building which located at Kangar, Perlis, Malaysia. As the results from the calculation, the system required 6 units of PV module, 5 units of battery and a 0.23 kW inverter. The cable and protection devices are from the calculation. The entire system was successfully installed and was able to support the load demand.</p>


Sign in / Sign up

Export Citation Format

Share Document