Ecological Restoration Programs for SO2 Emission from an Operation High-Sulfur Gas Field

2013 ◽  
Vol 726-731 ◽  
pp. 1786-1790
Author(s):  
Ai Ping Zhang

A high-sulfur gas field is at trial operation, and its H2S content is up to 14%~18%. If the high-sulfur gas field was operated properly and improperly, effects of SO2 emission on regional ecological environment were analyzed. Based on the investigation of ecological environment status, the sulfur-absorption capacity of regional ecosystem was estimated, and then the ecological restoration programs were put forward, including the vegetation restoration program, the spoil ground restoration program, the ecological landscape reconstruction program and soil protection measures. This may offer experience for development and management of other similar gas fields.

2014 ◽  
Vol 955-959 ◽  
pp. 2613-2618
Author(s):  
Ai Ping Zhang ◽  
Wei Ming Chen ◽  
Jie Liu ◽  
Dan Liu

The capacity of a large gas field is up to hundreds of billions of cubic metres, and percentage of the CO2 volume in raw gas is 8%~10%. Estimated by survey data and empirical equations, over 60% of the total emission from the gas field can be absorbed and utilized by regional crops and vegetation, and nearly a million tons per year exhausted. Based on analysis of mechanism and effect of CO2 influence on regional plants, soil and atmosphere, approaches for regional ecological restoration are put forward, including the approach of regional crops restoration, other plants restoration, ecological landscape reconstruction, and CO2 reduction technologies. This study provides reference for sustainable development of other gas field in low carbon era.


2018 ◽  
Vol 25 (2) ◽  
pp. 185-189
Author(s):  
Nguyễn Thế Thôn

Based on the ecolandscape theory and using the Map Info software, the author has established the ecological environmental map for Hoa Binhtown. In this map all of natural environmental components, poilution, degradation, catastrophe and break-down of environment are described.Annotation of the map have two parts : 1) the ecolandscape (ecological environment of the territory) is described with matrix ; 2) the pollution,degradation, catastrophe and break-down of environment are described with description table and that is under the matrix.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
Haochen Yu ◽  
Jiu Huang ◽  
Chuning Ji ◽  
Zi’ao Li

A large-scale energy and chemical industry base is an important step in the promotion of the integrated and coordinated development of coal and its downstream coal-based industry. A number of large-scale energy and chemical industrial bases have been built in the Yellow River Basin that rely on its rich coal resources. However, the ecological environment is fragile in this region. Once the eco-environment is destroyed, the wildlife would lose its habitat. Therefore, this area has attracted wide attention regarding the development of the coal-based industry while also protecting the ecological environment. An ecological network could improve landscape connectivity and provide ideas for ecological restoration. This study took the Ningdong Energy and Chemical Industrial Base as a case study. Morphological spatial pattern analysis was applied to extract core patches. The connectivity of the core patches was evaluated, and then the ecological source patches were recognized. The minimum cumulative resistance model, hydrologic analysis and circuit theory were used to simulate the ecological network. Then, ecological corridors and ecological nodes were classified. The results were as follows: (1) The vegetation fractional coverage has recently been significantly improved. The area of core patches was 22,433.30 ha. In addition, 18 patches were extracted as source patches, with a total area of 9455.88 ha; (2) Fifty-eight potential ecological corridors were simulated. In addition, it was difficult to form a natural ecological corridor because of the area’s great resistance. Moreover, the connectivity was poor between the east and west; (3) A total of 52 potential ecological nodes were simulated and classified. The high-importance nodes were concentrated in the western grassland and Gobi Desert. This analysis indicated that restoration would be conducive to the ecological landscape in this area. Furthermore, five nodes with high importance but low vegetation fractional coverage should be given priority in later construction. In summary, optimizing the ecological network to achieve ecological restoration was suggested in the study area. The severe eco-environmental challenges urgently need more appropriate policy guidance in the large energy and chemical bases. Thus, the ecological restoration and ecological network construction should be combined, the effectiveness of ecological restoration could be effectively achieved, and the cost could also be reduced.


Author(s):  
E A Gaevaya ◽  
I N Ilyinskaya ◽  
O S Bezuglova ◽  
S A Taradin

2014 ◽  
Vol 1073-1076 ◽  
pp. 2244-2247
Author(s):  
Hu Sun ◽  
Zhi Jun Ning ◽  
Zu Wen Wang ◽  
Zhen Li ◽  
Zhi Guo Wang

Erosion is a main failure of tubings and downhole tools in Changqing gas field. It is necessary to evaluate the erosion rate for the safety of tubing and strings. In this paper, the erosion of P110 steel, in the 0.2%wt guar gum fracturing fluid which contains sands, is investigated by weight loss method in the self-made jet experiment device. It is indicated that the erosion rate increases with the increment of slurry velocity exponentially. When the slurry velocity is in low velocity area, the electrochemical corrosion of dissolved oxygen dominates in erosion mechanism; when slurry velocity increases into middle velocity area, the weight loss is controlled by the synergism of corrosion-erosion; and when the slurry velocity increases into high velocity area, the weight loss rate is dominantly depended on erosion of particles. The results can provide guidelines for large-scale fracturing work of Changqing gas fields.


2021 ◽  
Author(s):  
Tran Nguyet Ngo ◽  
Lee Thomas ◽  
Kavitha Raghavendra ◽  
Terry Wood

Abstract Transporting large volumes of gas over long distances from further and deeper waters remains a significant challenge in making remote offshore gas field developments technologically and economically viable. The conventional development options include subsea compression, floating topside with topside compression and pipeline tie-back to shore, or floating liquefied natural gas vessels. However, these options are CAPEX and OPEX intensive and require high energy consumption. Demand for a lower emission solution is increasingly seen as the growing trend of global energy transition. Pseudo Dry Gas (PDG) technology is being developed by Intecsea, Worley Group and The Oil & Gas Technology Centre (Aberdeen) and tested in collaboration with Cranfield University. This is applied to develop stranded or remote gas reserves by removing fluids at the earliest point of accumulation at multiple locations, resulting in near dry gas performance. This technology aims to solve liquid management issues and subsequently allows for energy efficient transportation of the subsea gas enabling dramatic reductions in emissions. The PDG prototype tested using the Flow Loop facilities at Cranfield University has demonstrated the concept’s feasibility. Due to a greater amount of gas recovered with a much lower power requirement, the CO2 emissions per ton of gas produced via the PDG concept is by an order of magnitude lower than conventional methods. This study showed a reduction of 65% to 80% against standard and alternative near future development options. The paper considers innovative technology and a value proposition for the Pseudo Dry Gas concept based on a benchmarked study of a remote offshore gas field. The basin was located in 2000m of water depth, with a 200km long subsea tie-back. To date the longest tieback studied was 350km. It focused on energy consumption and carbon emission aspects. The conclusion is that decarbonisation of energy consumption is technically possible and can be deployed subsea to help meet this future challenge and push the envelope of subsea gas tie-backs.


Methane ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 24-37
Author(s):  
Muhammad Alfiza Farhan ◽  
Yuichi Sugai ◽  
Nuhindro Priagung Widodo ◽  
Syafrizal Syafrizal

The leakage of methane from the subsurface on the coalfield or natural gas field invariably becomes an important issue nowadays. In notable addition, materials such as activated carbon, zeolites, and Porapak have been successfully identified as adsorbents. Those adsorbents could adsorb methane at atmospheric pressure and room temperature. Therefore, in this scholarly study, a new method using adsorbents to detect points of methane leakage that can cover a wide-scale area was developed. In the beginning, the most capable adsorbent should be determined by quantifying adsorbed methane amount. Furthermore, checking the possibility of adsorption in the column diffusion and desorption method of adsorbents is equally necessary. The most capable adsorbent was activated carbon (AC), which can adsorb 1.187 × 10−3 mg-CH4/g-AC. Hereinafter, activated carbon successfully can adsorb methane through column diffusion, which simulates the situation of on-site measurement. The specific amount of adsorbed methane when the initial concentrations of CH4 in a bag were 200 ppm, 100 ppm, and 50 ppm was found to be 0.818 × 10−3 mg-CH4/g-AC, 0.397 × 10−3 mg-CH4/g-AC, 0.161 × 10−3 mg-CH4/g-AC, respectively. Desorption of activated carbon analysis shows that methane concentration increases during an hour in the temperature bath under 80 °C. In conclusion, soil methane leakage points can be detected using activated carbon by identifying the observed methane concentration increase.


2012 ◽  
Vol 518-523 ◽  
pp. 5143-5148
Author(s):  
Ai Chen Jia ◽  
Shuang Guo ◽  
Shi Guo Xu ◽  
Xian Feng Shi

To solve the ecological deterioration problems of the medium and small reservoirs’ downstream areas caused by water interception, the ecological restoration technique for dam’s downstream area is studied in this paper. Based on the investigation and analysis of the current ecological environment of a medium and small reservoirs’ downstream area in Qingyuan county of Liaoning, the downstream minimum ecological flow, with which the ecological environment of downstream can connect to that of upstream, is calculated. In the way of drawing water above the dam and building underground dam, the minimum ecological flow for the ecological environment of the downstream area will be able to reach a level where the continuity of the ecological environment is maintained. Consequently the aquatic habitats and stream ecological environment of the dam’s downstream channel can be improved and recovered.


2011 ◽  
Vol 51 (2) ◽  
pp. 684
Author(s):  
Peter Cook ◽  
Yildiray Cinar ◽  
Guy Allinson ◽  
Charles Jenkins ◽  
Sandeep Sharma ◽  
...  

Successful completion of the first stage of the CO2CRC Otway Project demonstrated safe and effective CO2 storage in the Naylor depleted gas field and confirmed our ability to model and monitor subsurface behaviour of CO2. It also provided information of potential relevance to CO2 enhanced gas recovery (EGR) and to opportunities for CO2 storage in depleted gas fields. Given the high CO2 concentration of many gas fields in the region, it is important to consider opportunities for integrating gas production, CO2 storage in depleted gas fields, and CO2-EGR optimisation within a production schedule. The use of CO2-EGR may provide benefits through the recovery of additional gas resources and a financial offset to the cost of geological storage of CO2 from gas processing or other anthropogenic sources, given a future price on carbon. Globally, proven conventional gas reserves are 185 trillion m3 (BP Statistical Review, 2009). Using these figures and Otway results, a replacement efficiency of 60 % (% of pore space available for CO2 storage following gas production) indicates a global potential storage capacity—in already depleted plus reserves—of approximately 750 Gigatonnes of CO2. While much of this may not be accessible for technical or economic reasons, it is equivalent to more than 60 years of total global stationary emissions. This suggests that not only gas—as a lower carbon fuel—but also depleted gas fields, have a major role to play in decreasing CO2 emissions worldwide.


Sign in / Sign up

Export Citation Format

Share Document