Spatial Distribution of Soil Inorganic Carbon in Urbanized Territories

2013 ◽  
Vol 726-731 ◽  
pp. 188-193 ◽  
Author(s):  
Nai Zheng Xu ◽  
Hong Ying Liu

Soil carbon stock changes induced by land-use change play an essential role in the global greenhouse effect and carbon circulation. This paper studies the spatial characteristics of soil inorganic carbon (SIC) distribution in urbanized territories of main cities in Jiangsu Province, China, based on the data of regional geochemical survey. Urbanization process in study area has been quickened greatly since the 1980s. The SIC density in urban area is 0.64±0.70 kg m-2, which mean density is 1.33 times of that in suburban and 1.52 times of that in countryside, and SIC distribution in urbanized area shows accumulation and obvious spatial variability. By comparison of SIC distribution in the central urban area, urbanized area during 1980-2000, 2000-2005 and suburban, the SIC obviously accumulates in central urban area, furthermore, the SIC density increases with urban land use duration extending and urban ecosystem evolving. This paper provides the characteristics of SIC distribution and evolution during the course of urbanization, which may be useful for assessing the impact of land-use and urban development on SIC pools in urban ecosystem.

Geoderma ◽  
2019 ◽  
Vol 353 ◽  
pp. 273-282 ◽  
Author(s):  
Hui An ◽  
Xiuzhi Wu ◽  
Yarou Zhang ◽  
Zhuangsheng Tang

2021 ◽  
Author(s):  
Berkay Dönmez ◽  
Kutay Dönmez ◽  
Deniz Diren-Üstün ◽  
Yurdanur Ünal

<p>Studies concerning the effects of urbanization on heavy precipitation events mostly focused on the summertime convective precipitation events. In these studies, the Urban Heat Island (UHI) effect was prominent over the urbanized region before the event, changing the spatial and temporal distribution of the precipitation. We aim to reveal the impact of urbanization over Ankara on the springtime frontal precipitation event of 5 May 2014, when the ground heating and UHI effects are not as strong as those in the summertime. We performed two different simulations based on the land-use scenarios with urban (URBAN) and without urban areas (NOURBAN) over Ankara, integrating the CORINE Land Use dataset into the Weather Research and Forecasting Model (WRF v3.8) and replacing the urban areas with the dominant land use category over the region. Four sub-regions with the identical area coverages corresponding to the upwind, central, and downwind parts of the city center are defined to have a lucid spatial and temporal representation of the event. The two simulation results agreed reasonably with the observations. In the simulation (URBAN) with the urban land use included, the spatial average of the daily rainfall amounts over the predefined sub-regions slightly decreased, especially the sub-regions to the upwind and downwind of the highly urbanized area. However, the difference in precipitation amount in the vicinity of the urbanized area between the two different simulations is not of significance in comparison to what was observed in other summertime precipitation studies. On the other hand, the UHI effect might be crucial in determining the impact of urban land use on the distribution and magnitude of the heavy springtime rainfall. To support this idea, we performed a similar analysis for a summertime convective precipitation event over Ankara and compared the results.</p>


2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 303
Author(s):  
Xinhai Lu ◽  
Yifeng Tang ◽  
Shangan Ke

The construction and operation of high-speed rail (HSR) has become an important policy for China to achieve efficiency and fairness and promote high-quality economic growth. HSR promotes the flow of production factors such as labor and capital and affects economic growth, and may further affect urban land use efficiency (ULUE). To explore the impact of HSR on ULUE, this paper uses panel data of 284 cities in China from 2005 to 2018, and constructs Propensity Score Matching-Differences in Differences model to evaluate the effect of HSR on ULUE. The result of entire China demonstrates that the HSR could significantly improves the ULUE. Meanwhile, this paper also considers the heterogeneity of results caused by geographic location, urban levels and scales. It demonstrates that the HSR has a significantly positive effect on ULUE of Eastern, Central China, and large-sized cities. However, in Western China, in medium-sized, and small-sized cities, the impact of HSR on ULUE is not significant. This paper concludes that construction and operation of HSR should be linked to urban development planning and land use planning. Meanwhile, the cities with different geographical locations and scales should take advantage of HSR to improve ULUE and promote urban coordinated development.


2019 ◽  
Vol 186 ◽  
pp. 36-41 ◽  
Author(s):  
Xinliang Dong ◽  
Bhupinder Pal Singh ◽  
Guitong Li ◽  
Qimei Lin ◽  
Xiaorong Zhao

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Sihan Wang ◽  
Weiwei Lu ◽  
Fangchao Zhang

Afforestation is a strategy to protect croplands and to sequestrate carbon in coastal areas. In addition, inorganic carbon is a considerable constitute of the coastal soil carbon pool. However, the vertical distribution and controlling factors of soil inorganic carbon (SIC) in plantations of coastal areas have been rarely studied. We analyzed the SIC content as well as physiochemical properties along soil profiles (0–100 cm) in young (YP) and mature (MP) poplar plantations in coastal eastern China. The soil profile was divided into six layers (0–10, 11–20, 21–40, 41–60, 61–80 and 81–100 cm) and a total of 36 soil samples were formed. The SIC content first increased from 0–10 cm (0.74%) to 11–20 cm (0.92%) and then fluctuated in the YP. In contrast, the SIC content increased with increasing soil depth until 40 cm and then leveled off, and the minimum and maximum appeared at 0–10 cm (0.54%) and 81–100 cm (0.98%) respectively in the MP. The soil inorganic carbon density was 12.05 and 12.93 kg m−2 within 0–100 cm in the YP and MP, respectively. Contrary to SIC, soil organic carbon (SOC) first decreased then levelled off within the soil profiles. Compared with the YP, the SIC content decreased 27.8% at 0–10 cm but increased 13.2% at 21–40 cm, meanwhile the SOC content in MP decreased 70.6% and 46.7% at 21–40 cm and 61–80 cm, respectively. The water-soluble Ca2+ and Mg2+ gradually decreased and increased, respectively within the soil profiles. The soil water-soluble Ca2+ increased 18.3% within 41–100 cm; however, the soil water-soluble Mg2+ decreased 32.7% within 21–100 cm in the MP when compared to the YP. Correlation analysis showed that SIC was negatively correlated with SOC, but positively correlated with soil pH and water-soluble Mg2+. Furthermore, structural equation modeling (SEM) indicated that SOC was the most important factor influencing the SIC content in the studied poplar plantations, indicating SOC sequestration promoted the dissolution of SIC. Therefore, our study highlights the trade-off between SIC and SOC in poplar plantations of coastal Eastern China.


2020 ◽  
Vol 12 (7) ◽  
pp. 1186 ◽  
Author(s):  
A.-M. Olteanu-Raimond ◽  
L. See ◽  
M. Schultz ◽  
G. Foody ◽  
M. Riffler ◽  
...  

Land use and land cover (LULC) mapping is often undertaken by national mapping agencies, where these LULC products are used for different types of monitoring and reporting applications. Updating of LULC databases is often done on a multi-year cycle due to the high costs involved, so changes are only detected when mapping exercises are repeated. Consequently, the information on LULC can quickly become outdated and hence may be incorrect in some areas. In the current era of big data and Earth observation, change detection algorithms can be used to identify changes in urban areas, which can then be used to automatically update LULC databases on a more continuous basis. However, the change detection algorithm must be validated before the changes can be committed to authoritative databases such as those produced by national mapping agencies. This paper outlines a change detection algorithm for identifying construction sites, which represent ongoing changes in LU, developed in the framework of the LandSense project. We then use volunteered geographic information (VGI) captured through the use of mapathons from a range of different groups of contributors to validate these changes. In total, 105 contributors were involved in the mapathons, producing a total of 2778 observations. The 105 contributors were grouped according to six different user-profiles and were analyzed to understand the impact of the experience of the users on the accuracy assessment. Overall, the results show that the change detection algorithm is able to identify changes in residential land use to an adequate level of accuracy (85%) but changes in infrastructure and industrial sites had lower accuracies (57% and 75 %, respectively), requiring further improvements. In terms of user profiles, the experts in LULC from local authorities, researchers in LULC at the French national mapping agency (IGN), and first-year students with a basic knowledge of geographic information systems had the highest overall accuracies (86.2%, 93.2%, and 85.2%, respectively). Differences in how the users approach the task also emerged, e.g., local authorities used knowledge and context to try to identify types of change while those with no knowledge of LULC (i.e., normal citizens) were quicker to choose ‘Unknown’ when the visual interpretation of a class was more difficult.


Sign in / Sign up

Export Citation Format

Share Document