Digital Urban Three-Dimensional Technique Base on OpenGL

2013 ◽  
Vol 726-731 ◽  
pp. 4568-4571
Author(s):  
Bing Bai ◽  
Xue Jun Chen ◽  
En Qiang Zhu ◽  
Wan Xiao Xue ◽  
Jie Yu

With the fast development of computer multimedia technology, space technology, visualization technology, digital geomatics technology and computer graphics technology, using three-dimensional GIS technology to realize virtual visualization scene become reality. Three-dimensional GIS had already been applied to a lot of fields, such as country resource management, urban planning, public security system, electric power telecom branch. The paper had paid great attention to the popular three-dimensional GIS technology which had been in progress studying nowadays. It has summarized the research content and developed condition of current three-dimensional GIS and expatiates on the comprehensive application foreground of three-dimensional GIS. It had discussed and studied the three-dimensional GIS modeling method and the key visualization technology which based on OpenGL. It designed and realized a three-dimensional GIS simulation system. The paper had done the main studies as follows: (1) 3D GIS modeling theory and method had been discussed in this paper, and the paper had realized 3D modeling based on 3dsmax become reality; (2) It had designed and realized a three-dimensional GIS simulation system based on visualization technology which based on OpenGL.

Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
pp. 1-10
Author(s):  
Meng Huang ◽  
Shuai Liu ◽  
Yahao Zhang ◽  
Kewei Cui ◽  
Yana Wen

The integration of Artificial Intelligence technology and school education had become a future trend, and became an important driving force for the development of education. With the advent of the era of big data, although the relationship between students’ learning status data was closer to nonlinear relationship, combined with the application analysis of artificial intelligence technology, it could be found that students’ living habits were closely related to their academic performance. In this paper, through the investigation and analysis of the living habits and learning conditions of more than 2000 students in the past 10 grades in Information College of Institute of Disaster Prevention, we used the hierarchical clustering algorithm to classify the nearly 180000 records collected, and used the big data visualization technology of Echarts + iView + GIS and the JavaScript development method to dynamically display the students’ life track and learning information based on the map, then apply Three Dimensional ArcGIS for JS API technology showed the network infrastructure of the campus. Finally, a training model was established based on the historical learning achievements, life trajectory, graduates’ salary, school infrastructure and other information combined with the artificial intelligence Back Propagation neural network algorithm. Through the analysis of the training resulted, it was found that the students’ academic performance was related to the reasonable laboratory study time, dormitory stay time, physical exercise time and social entertainment time. Finally, the system could intelligently predict students’ academic performance and give reasonable suggestions according to the established prediction model. The realization of this project could provide technical support for university educators.


2021 ◽  
Vol 58 (3) ◽  
pp. 137-142
Author(s):  
A.O. Dauitbayeva ◽  
◽  
A.A. Myrzamuratova ◽  
A.B. Bexeitova ◽  
◽  
...  

This article is devoted to the issues of visualization and information processing, in particular, improving the visualization of three-dimensional objects using augmented reality and virtual reality technologies. The globalization of virtual reality has led to the introduction of a new term "augmented reality"into scientific circulation. If the current technologies of user interfaces are focused mainly on the interaction of a person and a computer, then augmented reality with the help of computer technologies offers improving the interface of a person and the real world around them. Computer graphics are perceived by the system in the synthesized image in connection with the reproduction of monocular observation conditions, increasing the image volume, spatial arrangement of objects in a linear perspective, obstructing one object to another, changing the nature of shadows and tones in the image field. The experience of observation is of great importance for the perception of volume and space, so that the user "completes" the volume structure of the observed representation. Thus, the visualization offered by augmented reality in a real environment familiar to the user contributes to a better perception of three-dimensional object.


1999 ◽  
Author(s):  
Takeo Asano ◽  
Hiroshi Matsuzaki ◽  
Akito Saito ◽  
Yukihiko Furuhashi ◽  
Yuichiro Akatsuka ◽  
...  

Abstract Practical use of medical simulation system with virtual reality technology is expected because of the learning of the operation procedure. We have therefore developed a neurosurgical simulation system for minimally invasive surgery. Our system is composed of PC and one or two haptic interfaces. Operator can pick up the region of interest to specify the disease portion from DICOM format image data, then three-dimensional model have made by volume and surface rendering with this data. In the next step, system estimates and indicates on CRT the minimally invasive path from the head surface to the disease target that was picked up beforehand by this system which retains healthy human’s three-dimensional atlas data. Finally, the operator can perform a virtual surgery operation by the haptic interface that has been connected to PC, and can cut off an exact or approximate portion of the disease. The operator can feel the resistance from this virtual object. This operation process can be recorded for medical doctors to review later.


Sign in / Sign up

Export Citation Format

Share Document