Crystallization Behaviour of Polytetrafluoroethylene over very Large Cooling Rate Domains

2013 ◽  
Vol 747 ◽  
pp. 201-204
Author(s):  
Nicolas Bosq ◽  
Nathanaël Guigo ◽  
Nicolas Sbirrazzuoli

Polytetrafluoroethylene (PTFE) is a semi-crystalline polymer that demonstrates a very fast crystallization process on cooling. This study investigates the nonisothermal PTFE ultra-fast crystallization over a wide range of cooling rates via conventional Differential Scanning Calorimetry (DSC), Fast Scanning Calorimetry (FSC) and Ultra-Fast Scanning Calorimetry (UFSC). A new knowledge about crystallization kinetics of PTFE is obtained from the data obtained under very fast cooling rates. The shift of the melting peak to lower temperature shows that the crystals formed under fast cooling rates are slightly less stable than those produced under slower cooling rates. SEM analysis allows to observe these differences in crystal morphologies. According to the results, the crystallization is still present even for the fastest cooling rate employed and in consequences it is impossible to reach a metastable glassy state. The effective activation energy (Eα) displays a variation with the relative extent of crystallization (α) that is characteristic of a transition of PTFE crystallization from regime II to regime III around 312°C. Following the Hoffman-Lauritzen theory the Eα dependency obtained from the crystallizations under the different cooling rates was fitted in order to study the theoretical dependence of the growth rate.

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1797 ◽  
Author(s):  
Nicolas Bosq ◽  
Nathanaël Guigo ◽  
Jacques Persello ◽  
Nicolas Sbirrazzuoli

Polytetrafluoroethylene (PTFE) is a polymer that displays exceptional properties. This synthetic fluoropolymer is also known to crystallize very fast upon cooling. The present work highlights for the first time the influence of nanosilica clusters on PTFE crystallization at fast cooling rates (up to 5000 K·s−1). The silica was synthesized from aqueous silicate solution and the surface modification was performed using TriEthoxyFluoroSilane (TEFS). In order to understand the crystallization behavior of PTFE/silica nanocomposite at a fast cooling rate, the measurements were carried out by Fast Scanning Calorimetry (FSC). The data were consequently combined with the measurements performed by conventional Differential Scanning Calorimetry (DSC). Interestingly, the results displayed variation of the crystallization behavior for the nanocomposite at fast cooling rates compared to slow cooling rates. The differences in crystal morphologies were then observed by Scanning Electron Microscopy (SEM) after slow and fast cooling rates. Finally, the effective activation energies (Eα) obtained from the crystallization under various cooling rates were combined in order to obtain one set of Hoffman-Lauritzen parameters. This procedure allowed us to show that the crystallization of PTFE in the presence of silica is promoted or hampered according to the cooling rates employed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Abstract In this study, the differential scanning calorimetry (DSC) tests were performed to measure the nonisothermal crystallization behavior of carbon fiber reinforced polyether ether ketone (CF/PEEK) composites under different cooling rates. The characteristic parameters of crystallization were obtained, and the nonisothermal crystallization model was established. The crystallization temperature range of the material at different cooling rates was predicted by the model. The unidirectional laminates were fabricated at different cooling rates in the crystallization temperature range. The results showed that the crystallization temperature range shifted to a lower temperature with the increase of cooling rate, the established nonisothermal crystallization model was consistent with the DSC test results. It is feasible to shorten the cooling control range from the whole process to the crystallization range. The crystallinity and transverse tensile strength declined significantly with the increase of the cooling rate in the crystallization temperature range. The research results provided theoretical support for the selection of cooling conditions and temperature control range, which could be applied to the thermoforming process of semi-crystalline polymer matrixed composites to improve the manufacturing efficiency.


2010 ◽  
Vol 428-429 ◽  
pp. 247-250 ◽  
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai

The influence of cooling rate on the phase transitions of a three-benzene-ring containing bent-core liquid crystal 1,3-phenylene-bis[4-(hexylcarboyloxyl)benzylideneamine] has been investigated by means of differential scanning calorimetry and polarized optical microscopy. Our results show that the cooling rates in the second cooling run pose significant effects on the phase transitions of the bent-core liquid crystal despite the cooling rates in the first cooling run pose little effects on the phase transitions. In the second cooling run, the banana phases survived only when the cooling rates were in the range of 14~15oC/min whereas both slow cooling rates which were less than 13oC/min and fast cooling rates which were higher than 16oC/min made the banana phases disappeared.


Author(s):  
Christian Rowolt ◽  
Benjamin Milkereit ◽  
Armin Springer ◽  
Mami Mihara-Narita ◽  
Hideo Yoshida ◽  
...  

AbstractThe scope of this work was to investigate the quench sensitivity of a high-purity wrought aluminum alloy Al6Zn0.75 Mg (in this work called 7003pure). This is compared to a similar alloy with the additions of Fe, Si, and Zr at a sum less than 0.3 at.% (in this work called 7003Fe,Si,Zr). Differential scanning calorimetry (DSC) was used for an in situ analysis of quench induced precipitation in a wide range of cooling rates varying between 0.0003 and 3 K/s. In 7003pure, three main precipitation reactions were observed during cooling, a medium temperature reaction with a distinct double peak between 325 and 175 °C and a very low temperature reaction starting at about 100 °C. An additional high temperature reaction related to the precipitation of Mg2Si starting at 425 °C has been observed for 7003Fe,Si,Zr. In terms of hardness after natural as well as artificial aging, alloy 7003pure shows a very low quench sensitivity. Hardness values on the saturation level of about 120 HV1 are seen down to cooling rates of 0.003 K/s. The as-quenched hardness (5 min of natural aging) shows a maximum at a cooling rate of 0.003 K/s, while slower and faster cooling results in a lower hardness. In terms of hardness after aging, 0.003 K/s could be defined as the technological critical cooling rate, which is much higher for 7003Fe,Si,Zr (0.3–1 K/s). The physical critical cooling rates for the suppression of any precipitation during cooling were found to be about 10 K/s for both variants.


2007 ◽  
Vol 554 ◽  
pp. 25-30 ◽  
Author(s):  
Wynette Redington ◽  
Murt Redington ◽  
Stuart Hampshire

Rapid cooling rates and quenching have traditionally been associated with glass formation. Hampshire et al. [1] investigated oxynitride glasses cooled in a tungsten resistance furnace at approximately 200oC/min and found that fast cooling rates were only important near the limits of the glass-forming region. In the current work on various M-Si-Al-O-N (M=Y, La, Yb, Nd) systems, it was found that even at a relatively slow cooling rate glass formation was still possible for a wide range of compositions. Different cooling rates were investigated to determine the minimum cooling rate at which a glass will form. Quantitative X-ray analysis of melted compositions indicated the relative amounts of amorphous phase and crystalline phase.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


2014 ◽  
Vol 30 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Linfang Li ◽  
Bingge Zhao ◽  
Bin Yang ◽  
Quanliang Zhang ◽  
Qijie Zhai ◽  
...  

Abstract


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 918
Author(s):  
Julia Osten ◽  
Benjamin Milkereit ◽  
Michael Reich ◽  
Bin Yang ◽  
Armin Springer ◽  
...  

The mechanical properties after age hardening heat treatment and the kinetics of related phase transformations of high strength AlZnMgCu alloy AA 7068 were investigated. The experimental work includes differential scanning calorimetry (DSC), differential fast scanning calorimetry (DFSC), sophisticated differential dilatometry (DIL), scanning electron microscopy (SEM), as well as hardness and tensile tests. For the kinetic analysis of quench induced precipitation by dilatometry new metrological methods and evaluation procedures were established. Using DSC, dissolution behaviour during heating to solution annealing temperature was investigated. These experiments allowed for identification of the appropriate temperature and duration for the solution heat treatment. Continuous cooling experiments in DSC, DFSC, and DIL determined the kinetics of quench induced precipitation. DSC and DIL revealed several overlapping precipitation reactions. The critical cooling rate for a complete supersaturation of the solid solution has been identified to be 600 to 800 K/s. At slightly subcritical cooling rates quench induced precipitation results in a direct hardening effect resulting in a technological critical cooling rate of about 100 K/s, i.e., the hardness after ageing reaches a saturation level for cooling rates faster than 100 K/s. Maximum yield strength of above 600 MPa and tensile strength of up to 650 MPa were attained.


1994 ◽  
Vol 58 (390) ◽  
pp. 143-150 ◽  
Author(s):  
Gian Mario Molin ◽  
Mario Tribaudino ◽  
Elisabetta Brizi

AbstractThe crystal chemistry of clinopyroxene, orthopyroxene and olivine from a crushed fragment of the H5 Zaoyang chondrite has been investigated by X-ray structure refinement and detailed microprobe analysis. The meteoritic pyroxenes have cell and polyhedral volumes which compare well with such data from terrestrial pyroxenes that typically crystallize at low-pressure. Fe2+ and Mg are rather disordered in M1 and M2 sites of clino- and orthopyroxenes; the closure temperatures of the exchange reaction are 600 and 512°C respectively, which is consistent with a reasonably fast cooling rate, estimated to be of the order of 1°C/day.The closure temperature for the intercrystalline Ca-Mg exchange reaction for clino- and orthopyroxenes is 900°C as calculated from clino- and orthopyroxene intergrowth.The cooling rates obtained from Fe2+-Mg intracrystalline partitioning suggest a cooling of the order of degrees per day at temperatures of 600–500°C due to a strong loss of heat by irradiation.


2016 ◽  
Vol 877 ◽  
pp. 147-152 ◽  
Author(s):  
Benjamin Milkereit ◽  
Michael Reich ◽  
Olaf Kessler

Quenching is a critical step during the strengthening age hardening of Aluminium alloys. To obtain optimal technological results, parts should be quenched with the upper critical cooling rate. The precipitation behaviour of Al alloys during cooling from solution annealing and thereby the critical cooling rates are typically investigated by in-situ measurements with differential scanning calorimetry (DSC). Conventional DSCs are limited at cooling rates below 10 Ks-1. Unfortunately, medium to high strength Al alloys typically have critical cooling rates between 10 and some 100 Ks-1. Recently it was shown that dilatometry is generally able for in-situ detection of precipitation in Al alloys. Dilatometry allows controlled cooling up to some 100 Ks-1 and therefore covers the cooling rate range relevant. In this work, we aim to show up and discuss possibilities and limitations of dilatometric detection of quench induced precipitates in 2xxx, and 7xxx Al alloys. The basic method will be presented and results will be compared with DSC work.


Sign in / Sign up

Export Citation Format

Share Document