Propranolol Hydrochloride Extended-Release Matrix Tablets Using Natural Rubber Latex as Binder

2013 ◽  
Vol 747 ◽  
pp. 91-94 ◽  
Author(s):  
Kamon Panrat ◽  
Prapaporn Boonme ◽  
Wirach Taweepreda ◽  
Wiwat Pichayakorn

Matrix is one of the most interesting drug delivery systems to control drug release in pharmaceutical dosage forms. Natural rubber latex (NRL) from Hevea brasiliensis consists of cis-1,4-polyisoprene as the major polymer. It presents interesting physical properties such as easy to manipulate, low cost, high mechanical resistance, and insoluble in water. The aim of this study was to use the NRL as binder in matrix tablets for controlling the release rate of drug. NRL, sodium carboxymethylcellulose, olive oil, Tween 80, and lactose were used as polymer, adsorbent, plasticizer, surfactant, and diluent, respectively. Propranolol hydrochloride was used as a model drug. Propranolol hydrochloride matrix tablets were prepared by conventional heat-melting method. The in vitro release of drug from matrix tablets was determined by UV-Vis method according to dissolution test under Propranolol Hydrochloride Tablets USP30-NF25 monograph. Morphology of propranolol hydrochloride matrix tablet before and after released study was observed by scanning electron microscopy (SEM). It was found that NRL matrix tablets could control the drug release up to 12 hours. The release profiles were best fitted with Higuchi model. NRL amounts affected the properties of the propranolol hydrochloride matrix tablets. Increasing the NRL quantity in the matrices provided the decrease of release rate of drug. SEM photographs showed the number, size, and distribution of pore in propranolol hydrochloride matrix tablets that depended on amount of NRL addition. These results confirmed that NRL was possible to use as binder for matrix tablets in oral drug delivery systems.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Bing Cai ◽  
Karin Söderkvist ◽  
Håkan Engqvist ◽  
Susanne Bredenberg

In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2) were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2018 ◽  
Vol 18 (10) ◽  
pp. 857-880 ◽  
Author(s):  
Salma E. Ahmed ◽  
Nahid Awad ◽  
Vinod Paul ◽  
Hesham G. Moussa ◽  
Ghaleb A. Husseini

Conventional chemotherapeutics lack the specificity and controllability, thus may poison healthy cells while attempting to kill cancerous ones. Newly developed nano-drug delivery systems have shown promise in delivering anti-tumor agents with enhanced stability, durability and overall performance; especially when used along with targeting and triggering techniques. This work traces back the history of chemotherapy, addressing the main challenges that have encouraged the medical researchers to seek a sanctuary in nanotechnological-based drug delivery systems that are grafted with appropriate targeting techniques and drug release mechanisms. A special focus will be directed to acoustically triggered liposomes encapsulating doxorubicin.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2009 ◽  
Vol 12 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Rondinelli Donizetti Herculano ◽  
Cecília Pereira Silva ◽  
Cibele Ereno ◽  
Sérgio Augusto Catanzaro Guimaraes ◽  
Angela Kinoshita ◽  
...  

2018 ◽  
Vol 42 (17) ◽  
pp. 14179-14187
Author(s):  
Janisha Jayadevan ◽  
G. Unnikrishnan

Novel blend membranes from physico-chemically modified deproteinized natural rubber latex for drug release applications.


Sign in / Sign up

Export Citation Format

Share Document