Analysis of Vibration Characteristics Basing on a Multi-Rigid Suspension Model and a Multi-Flexible Suspension Model

2013 ◽  
Vol 748 ◽  
pp. 427-431
Author(s):  
Xue Ying Li ◽  
Zhuo Ping Yu ◽  
Zeng Liang Yu ◽  
Lu Xiong

The torque vibration derived from in-wheel-motor transmitted to body frame through suspension system without the absorption of mechanical transmission parts, then excited every body panel to shape the vehicle interior noise, which influenced the quality of the vehicle NVH. This paper aims to build an accurate suspension system simulation model to analyze the influence of suspension parts parameters to system vibration transmission property. Basis on a novel empirical model of rubber bushing, a multi-rigid suspension model and a multi-flexible suspension model had been established respectively. The vibration characteristics of two models were simulated, furthermore the swept-sine exciting vertical force signal on wheel contact point were input on the simulation models to find the difference between rigid and flexible model. The simulation results show that: the multi-flexible model can reflect the vibration characteristics of the suspension system more accurately in the high frequency range and so is it more applicable to the simulation analysis of vibration characteristics of in-wheel-motor electric vehicle suspension system.

2021 ◽  
Vol 2074 (1) ◽  
pp. 012023
Author(s):  
Jianjun Liu

Abstract A complete suspension model is established, and the suspension system is simulated and optimized. The method of suspension system establishment and simulation is explained in detail, and the influence of suspension parameter changes on vehicle handling and stability is analyzed in detail. The dynamic simulation analysis of wheel parallel runout test was carried out on the system, and the suspension system was optimized by artificial intelligence algorithm. The research results provide a technical basis for the design of automobile suspension.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Yan-yang Wang ◽  
Yi-nong Li ◽  
Wei Sun ◽  
Chao Yang ◽  
Guang-hui Xu

The vibration of SRM obtains less attention for in-wheel motor applications according to the present research works. In this paper, the vertical component of SRM unbalanced radial force, which is named as SRM vertical force, is taken into account in suspension performance for in-wheel motor driven electric vehicles (IWM-EV). The analysis results suggest that SRM vertical force has a great effect on suspension performance. The direct cause for this phenomenon is that SRM vertical force is directly exerted on the wheel, which will result in great variation in tyre dynamic load and the tyre will easily jump off the ground. Furthermore, the frequency of SRM vertical force is broad which covers the suspension resonance frequencies. So it is easy to arouse suspension resonance and greatly damage suspension performance. Aiming at the new problem, FxLMS (filtered-X least mean square) controller is proposed to improve suspension performance. The FxLMS controller is based on active suspension system which can generate the controllable force to suppress the vibration caused by SRM vertical force. The conclusion shows that it is effective to take advantage of active suspensions to reduce the effect of SRM vertical force on suspension performance.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
N. Ikhsan ◽  
R. Ramli ◽  
A. Alias

In this paper, the optimum setting for suspension hard points was determined from a half vehicle suspension system. These optimized values were obtained by considering the Kinematic and Compliance (K&C) effects of a verified PROTON WRM 44 P0-34 suspension model developed using MSC/ADAMS/CAR. For optimization process, multi body dynamic software, MSC/ADAMS/INSIGHT and Design of Experiment (DoE) method was employed. There were total of 60 hard points (factors) in x, y and z axis-direction for both front and rear suspension while toe, camber and caster change were selected as the objective function (responses) to be minimized. The values of 5 mm, 10 mm and 15 mm were used as relative values of factor setting to determine the factor range during optimization process. The hard point axis-direction that has the most effects on the responses was identified using the Pareto chart to optimize while the rests were eliminated. As expected result, a new set of suspension system model with a selected of Kinematic and Compliance (K&C) data set were obtained, and compared with the verified simulation data when subjected to the vertical parallel movement simulation test to determine the best setting and optimum suspension hard points configuration.  


Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.


2012 ◽  
Vol 479-481 ◽  
pp. 1355-1360
Author(s):  
Jian Guo Chen ◽  
Jun Sheng Cheng ◽  
Yong Hong Nie

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. When magneto-rheological dampers are adopted to attenuate vibration of the sprung mass, the damping forces of the dampers need to be distributed. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear full vehicle semi-active suspension model is proposed. Considering the realization of the control of magneto-rheological dampers, a hysteretic polynomial damper model is adopted. A differential geometry approach is used to decouple the nonlinear suspension system, so that the wheels and sprung mass become independent linear subsystems and independent to each other. A control rule of vibration attenuation is designed, by which the control current applied to the magneto-rheological damper is calculated, and used for the decoupled suspension system. The simulations show that the acceleration of the sprung mass is attenuated greatly, which indicates that the control algorithm is effective and the hysteretic polynomial damper model is practicable.


Author(s):  
P. Khan ◽  
P. Hwang

The 4-DOF suspension model is employed in order to analyze the multiple flying height states of the coupled air bearing – suspension system. The results are compared with previously presented results for the simpler suspension model.


Sign in / Sign up

Export Citation Format

Share Document