Removal of Methyl Red from Aqueous Solution by Adsorption onto Mg-Al HTLc

2013 ◽  
Vol 750-752 ◽  
pp. 1426-1429
Author(s):  
Yun Bo Zang

In this study, removal of Methyl Red from aqueous solutions by synthetic Mg-Al-HTlc was investigated as a function of contact time, pH and temperature. It is found that HTlc could reduced Methyl Red concentration effectively. The kinetic process which reached equilibrium at about 2h can be fitted by pseudo-second order kinetics. The percent removal of MR by the HTlc was dependent on the initial pH of bulk solution. There was no much changes in amount of adsorption in the initial pH range of 6-8, while it reached maxium at about of 9. The adsorption process was endothermic.

2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


2014 ◽  
Vol 805 ◽  
pp. 581-584 ◽  
Author(s):  
Débora Martins Aragão ◽  
Maria de Lara P.M. Arguelho ◽  
Carolina Mangieri Oliveira Prado ◽  
José do Patrocinio Hora Alves

Natural kaolinite clay collected in the State of Sergipe (northeast Brazil) was used as an adsorbent for the ions Pb2+, Cd2+, and Cu2+present in aqueous solution. Adsorption equilibrium was reached rapidly, enabling use of a contact time of 30 minutes, and maximum adsorption was achieved at pH 7.0. For all three metal ions, the adsorption data could be fitted using the Langmuir isotherm and the adsorption process obeyed a pseudo-second order kinetic model.


2019 ◽  

<p>This paper describes the adsorption of Al3+ ions from aqueous solutions, by natural clay (from Sakarya's Yenigün district) and coconut shell modified by means of acid treatment. Batch experiments were carried out to determine the effect of various factors such as initial pH (4-9), temperature (20, 40, 70 oC), initial concentration (10 to 200 mg L-1) and contact time (1-120 minute) on the adsorption process. The adsorption experiments were performed at a temperature of 20 ±2 oC), at 200 rpm agitation rate, with an adsorbent level of 1 g L-1, produced 98.95% (at pH 6) and 92.83% (at pH 7) maximum Al3+ removal efficiency for clay and coconut shell based adsorbents respectively. Furthermore, the process was found to be exothermic for clay and endothermic for coconut. XRF and XRD analyses of the clay variety used in adsorption analyses revealed it to be saponite clay, within the larger group of smectite clay minerals. The application of Langmuir revealed maximum adsorption capacity of 149.25 mg g-1 for natural clay adsorbent (NCA), and 120.482 mg g-1 for coconut shell adsorbent (CSA). Moreover, adsorption kinetics were found to be consistent with the second order kinetics (R2 &gt; 0.95). The result shows that, natural clay and coconut shell adsorbents are effective adsorbents to remove Al3+ from aqueous solutions with good adsorption rate (&gt;92.8%).</p>


2021 ◽  
Vol 333 ◽  
pp. 04004
Author(s):  
Anh Viet Hoang ◽  
Ya Wen Chen ◽  
Ya-Fen Wang ◽  
Syouhei Nishihama ◽  
Kazuharu Yoshizuka

Reductive adsorption of chromium (Cr) has been investigated, employing coal-based activated carbon with batchwise study. The adsorption was carried out by varying parameters such as pH of the aqueous solution and contact time. Cr(III) was hardly adsorbed on activated carbon, and it was precipitated at high pH region. High adsorption amounts of Cr(VI) was obtained at pH range 4.5 – 5.5. In the adsorption process, reduction of Cr(VI) to Cr(III) was occurred at especially acidic pH region, and thus most of Cr remained in the aqueous solution in this pH region was Cr(III).


2019 ◽  
Vol 16 (4) ◽  
pp. 0892
Author(s):  
Saddam M. Al-Mahmoud

The adsorption of Malonic acid, Succinic acid, Adipic acid, and Azelaic acid from their aqueous solutions on zinc oxide surface were investigated. The adsorption efficiency was investigated using various factors such as adsorbent amount, contact time, initial concentration, and temperature. Optimum conditions for acids removal from its aqueous solutions were found to be adsorbent dose (0.2 g), equilibrium contact time (40 minutes), initial acids concentration (0.005 M). Variation of temperature as a function of adsorption efficiency showed that increasing the temperature would result in decreasing the adsorption ability. Kinetic modeling by applying the pseudo-second order model can provide a better fit of the data with a greater correlation coefficient, which indicates that the adsorption process follow the pseudo-second order kinetics. The negative values of Gibbs free energy and the enthalpy change confirm the spontaneous and exothermic nature of the adsorption process. A good ability of zinc oxide to remove aliphatic dicarboxylic acids from its aqueous solutions has been found, and the chain length of the acids has no significant effect on its adsorption.


2015 ◽  
Vol 73 (6) ◽  
pp. 1269-1278 ◽  
Author(s):  
Hejun Gao ◽  
Luanluan Zhang ◽  
Yunwen Liao

A novel adsorbent consisting of polyethyleneimine-modified multi-wall carbon nanotubes (PEI-MWCNTs) was synthesized by grafting PEI on the carboxyl MWCNTs. The surface properties of the PEI-MWCNTs were measured by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, and zeta potential. The adsorption behavior of the PEI-MWCNTs was investigated using sunset yellow FCF as adsorbate. The effects of dosage of adsorbent, the initial pH of solution, contact time and temperature on the adsorption capacity were studied. Then, the kinetics and thermodynamics of the adsorption process were further investigated. Experimental results showed that the adsorption kinetics fitted a pseudo-second-order model and the adsorption isotherms agreed well with the Langmuir model. The adsorption process occurred very fast and the adsorption capacity of PEI-MWCNTs was much higher than that of many of the previously reported adsorbents. Additionally, the plausible adsorption mechanism was discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Saeedeh Hashemian ◽  
Mohammad Reza Shahedi

Ag/kaolin nanocomposite was prepared by reduction of Ag+ion with ethanol at alkaline condition on kaolin surface. Nanocomposite was characterized by FTIR, XRD, TEM, and BET methods. Results showed the Ag/kaolin composite has particle size 50 nm. The surface area was increased from kaolin to Ag/kaolin from 1.0215 to 7.409 m2 g−1, respectively. Ag/kaolin nanocomposite was used for adsorption of acid cyanine 5R (AC5R) from aqueous solution. The effect of parameters such as contact time, pH, and mass of nano composite has been investigated. The maximum percentage of adsorption of AC5R was found at pH 3 and contact time of 60 min. The higher percentage removal of AC5R by Ag/kaolin than kaolin can be attributed to catalytic activity of Ag on the surface of kaolin. The experimental data was fitted by pseudo-second-order kinetic model. The adsorption isotherm data could be well interpreted by Langmuir isotherm model. From the results of thermodynamic study, the adsorption process of AC5R onto Ag/kaolin nanocomposite was spontaneous and endothermic process. The process is clean and safe for purifying of water pollution.


1997 ◽  
Vol 35 (7) ◽  
pp. 71-78 ◽  
Author(s):  
Shuzo Tokunaga ◽  
Syed A. Wasay ◽  
Sang-Won Park

A new adsorption process for the removal of As(V) ion from aqueous solutions has been studied using lanthanum hydroxide (LH), lanthanum carbonate (LC) and basic lanthanum carbonate (BLC). These La compounds were effective in removing As ion to decrease the concentration down to &lt; 0.001 mM. Dissolution of these La compounds was measured in the pH range of 2 to 12. The dissolution was appreciable at initial pH &lt;4.3, &lt;4.3 and &lt;4.0 for LH, LC and BLC, respectively. Kinetic study showed that the As removal was a first-order reaction in the neutral pH range and the rate constants were in the order of LH &gt; LC &gt; BLC. The As removal was highly pH-dependent. The optimum pH range was 3-8, 4-7 and 2-4 for LH, LC and BLC, respectively. The following two mechanisms are proposed: (i) adsorption by exchange of CO3 and/or OH group with As ions in the neutral to alkaline pH range where La does not dissolve and (ii) precipitation of insoluble lanthanum arsenate, LaAsO4, in the acid pH range.


2012 ◽  
Vol 549 ◽  
pp. 362-365 ◽  
Author(s):  
Ying Hua Song ◽  
Sheng Ming Chen ◽  
Jian Min Ren ◽  
Yuan Gao ◽  
Hui Xu

The adsorption of fuchsine by peanut husk, which was crosslinked by epichlorohydrin was studied with variation in the parameters of contact time, pH, initial fuchsine concentration and temperature. They were used for equilibrium adsorption uptake studies with fuchsine. The results indicate that adsorption equilibrium could be well described by both the Langmuir and the Freundlich isotherm equation. The adsorption followed the pseudo-second order model. The thermodynamic constants of the adsorption process were also evaluated, which suggest an endothermic adsorption process which runs spontaneously.


Sign in / Sign up

Export Citation Format

Share Document