Dynamic Modeling and Response Analysis of Lateral-Torsional Coupling Vibration of the Slewing Mechanism of a Hydraulic Excavator

2013 ◽  
Vol 753-755 ◽  
pp. 1755-1759
Author(s):  
Xu Juan Yang ◽  
Guang Heng Xu ◽  
Zhao Jun Li ◽  
Ru Gui Wang

A lateral-torsional coupled vibration model of the slewing mechanism of a hydraulic excavator is developed with consideration of the effect of lateral vibration and torsional vibration of sun gear and planetary gear on mesh displacement, the mesh stiffness of gear pairs, the bearing stiffness of the planetary and the coupling relationship of two stage planetary gear trains. The dynamic response of the slewing mechanism of a hydraulic excavator is obtained. Compared to the pure torsional vibration, the lateral-torsional vibration model is more reasonable.

2012 ◽  
Vol 253-255 ◽  
pp. 2102-2106 ◽  
Author(s):  
Xu Juan Yang ◽  
Zong Hua Wu ◽  
Zhao Jun Li ◽  
Gan Wei Cai

A torsional vibration model of the slewing mechanism of a hydraulic excavator is developed to predict its free vibration characteristics with consideration of many fundamental factors, such as the mesh stiffness of gear pairs, the coupling relationship of a two stage planetary gear trains and the variety of moment of inertia of the input end caused by the motion of work equipment. The natural frequencies are solved using the corresponding eigenvalue problem. Taking the moment of inertia of the input end for example to illustrate the relationship between the natural frequencies of the slewing mechanism and its parameters, based on the simulation results, just the first order frequency varies significantly with the moment of inertia of the input end of the slewing mechanism.


2012 ◽  
Vol 166-169 ◽  
pp. 3180-3183
Author(s):  
Xue Shi Yao ◽  
Chun Long Zheng

In order to find the cause of the cracked intermediate axis in a transmission,the characteristic of the bending vibration,torsional vibration and bending-torsional coupling vibration were studied through the analysis of the nature frequency and modal shape based on prestress.The results show that the fatigue fracture of the axis is mainly due to the resonant torsional frequency and bending-torsional coupling vibration and It is basically demonstrated by experiment.It has been found that the fundamental frequency is increase with the increase in spin axis velocity because of the centrifugal load i.e.prestress.The effets can be accounted for by an adjustment of the stiffness,and the dynamic equations are derived.In the end,it is made the optimized design on the axis,the low inherent frequencies are optimized in order to avoid resonance.The problem of the cracked intermediate axis has been solved.


Author(s):  
Sha Wei ◽  
Qinkai Han ◽  
Zhipeng Feng ◽  
Yanhua Shen ◽  
Fulei Chu

Planetary gear transmission system is one of the primary parts of the wind turbine drive train. Due to the assembly state, lubrication conditions and wear, the mesh stiffness of the planetary gear system is an uncertain parameter. In this paper, taking the uncertainty of mesh stiffness into account, the dynamic responses of a wind turbine gear system subjected to wind loads and transmission error excitations are studied. Firstly, a lumped-parameter model is extended to include both the planetary and parallel gears. Then the fluctuation ranges of dynamic mesh forces are predicted quantitatively and intuitively based on the combined Chebyshev interval inclusion function and numerical integration method. Finally, examples of gear trains with different interval mesh stiffnesses are simulated and the results show that tooth separations are becoming more obvious at the resonant speed by considering the fluctuating mesh stiffness of the second parallel gear stage. The nonlinear tooth separations are degenerated obviously as the fluctuation error of the mesh stiffness of the second parallel gear set is increased.


2013 ◽  
Vol 319 ◽  
pp. 610-615 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang

The power system equipped in machinery contains power source (motor or engine) and gear reducer to get large output torque. The rotation speed of motor is made higher and higher to obtain high power with the same volume. Hence, the reduction ratio of gear reducer is required to be higher and higher. Planetary gear trains can be used as the gear reducers with high reduction ratio. However, the planetary gear train with high reduction ratio is compound gear system. The purpose of this paper is to propose 2K-2H type planetary gear reducers with high reduction ratio. Based on the concept of train value equation, we propose a new representation to present the kinematic relationship of the members of the train circuit. According to this representation graph, we propose an algorithm for the kinematic design of planetary simple gear trains with high reduction ratio. Some 2K-2H type planetary gear reducers are designed to illustrate the design algorithm.


2006 ◽  
Vol 505-507 ◽  
pp. 1003-1008 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsin Sheng Lee ◽  
Teu Hsia Chen

Planetary gear trains can be used as the transmission systems with high reduction ratio for power machinery. The purpose of this paper is to propose an algorithm for the kinematic design of planetary gear trains with high reduction ratio. Based on the concept of train value equation, we propose a new representation to present the kinematic relationship of the members of the train loop. According to this representation graph, we propose an efficient algorithm for the kinematic design of planetary gear trains with high reduction ratio. Three design examples are designed to illustrate the design algorithm. Based on the proposed algorithm, all planetary gear trains with high reduction ratio can be synthesized.


2011 ◽  
Vol 199-200 ◽  
pp. 431-435 ◽  
Author(s):  
Long Chang Hsieh ◽  
Tzu Hsia Chen

The bicycle is invented so far more than 200 years. Now, bicycles are used as exercising equipments and traffic vehicles. Planetary gear trains can be used as the transmission systems with multi-speed for bicycles. The purpose of this work is to propose a design methodology for the design of multi-speed internal gear hubs with planetary gear trains for bicycles. Based on the concept of train value equation and the kinematic relationship of the members between the train circuit, we propose a design methodology for the kinematic design of multi-speed gear hubs. One multi-speed internal gear hubs is designed to illustrate the design methodology. Based on the proposed methodology, all multi-speed gear hubs with planetary gear trains can be synthesized.


1978 ◽  
Vol 192 (1) ◽  
pp. 251-258 ◽  
Author(s):  
J. W. Polder

A model system is described by parameters for shafts, planetary gear trains and nodes. Moments of inertia, spring stiffnesses and damping coefficients are assigned to the shafts; gear ratios and efficiencies are assigned to planetary gear trains. The equivalence of angular velocities and torques is demonstrated for shafts (vibration model), as well as for planetary gear trains and nodes (configuration of the system). This brings about a new view on the concept of degrees of freedom. The close relationship between gear ratios and torque ratios yields identical functions for these ratios when applied to the input and output shafts of a system. The full use of this relationship requires strict conventions of signs and an extension of the interpretation of values. The introduction of a new concept, named responsivity, expresses the relationships between torques and between powers of arbitrary shafts. With suitable equations, it becomes possible to investigate torque and power distributions exhaustively.


2020 ◽  
pp. 146808741989593
Author(s):  
Shiwei Ni ◽  
Yibin Guo ◽  
Wanyou Li ◽  
Donghua Wang ◽  
Zhijun Shuai ◽  
...  

In this article, a coupling model of shafting torsional vibration with advanced injection angle is proposed to study the effect of advanced injection angle on shaft torsional vibration. Using Simulink, a model shaft system of a 4190ZL_C medium-speed diesel engine is created to study the effect. The proposed coupling model, the traditional simulation method and the test are conducted on the torsional vibration of the 4190ZL_C medium-speed diesel engine, separately. The results show that the spectrum from the coupling vibration model is more abundant than from the traditional vibration model. Hence, considering the effect of advanced injection angle on shaft torsional vibration, the proposed coupling model can improve the modeling accuracy of shaft torsional vibration. It provides a new approach in engine design.


2013 ◽  
Vol 660 ◽  
pp. 75-79
Author(s):  
Yang Yang ◽  
Yan Xiao Fu ◽  
Liang Yi Cui ◽  
Xiang Yang Xu

A torsional vibration mechanical model of the transmission system of a certain cetarpillar vehicle is established using mass distribution method. The torsional vibration model, containing multi-stage simple and compound planetary gear transmissions, fixed-axis transmission and power split/converge system, is established based on Lagrange Equation. Matlab is used for presenting and writing the according program of the modal analysis of free torsional vibration. The study is focused on the torsional vibration characteristic of the system on one specific working condition and the similarity in the inherent characteristics of the system on different working conditions.


2019 ◽  
Vol 43 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Shunxin Cao ◽  
Ruijun Zhang ◽  
Shuohua Zhang ◽  
Shuai Qiao ◽  
Dongsheng Cong ◽  
...  

Interaction and wear between wheel and rail become increasingly serious with the increase in elevator speed and load. Uneven roller surface, eccentricity of rollers, and the looseness of rail brackets result in serious vibration problems of high-speed and super-high-speed elevators. Therefore, the forced vibration differential equation representing elevator guide rails is established based on Bernoulli–Euler theory, and the vibration equation of the elevator guide shoes and the car is constructed using the Darren Bell principle. Then, the coupled vibration model of guide rail, guide shoes, and car can be obtained using the relationship of force and relative displacement among these components. The roller–rail parameters are introduced into the established coupled vibration model using the model equivalent method. Then, the influence of roller–rail parameters on the horizontal vibration of super-high-speed elevator cars is investigated. Roller eccentricity and the vibration acceleration of the car present a linear correlation, with the amplitude of the car vibration acceleration increasing with the eccentricity of the roller. A nonlinear relationship exists between the surface roughness of the roller and the vibration acceleration of the car. Increased continuous loosening of the guide rail results in severe vibration of the car at the loose position of the support.


Sign in / Sign up

Export Citation Format

Share Document