Feature Extraction for Classification of Proteomic Profile

2013 ◽  
Vol 756-759 ◽  
pp. 4576-4580
Author(s):  
Xiao Li Yang ◽  
Qiong He ◽  
Fen Yang

This work studies on feature extraction for classification of proteomic profile. We evaluated four methods, including principal component analysis (PCA), independent component analysis (ICA), locally linear embedding (LLE) and weighted maximum margin criterion (WMMC). PCA, ICA and LLE extract features based on traditional low-dimension map technique. Comparatively, WMMC extracts features according to classification goal. To study classification performance of PCA, ICA, LLE and WMMC in detail, we used two well known classification methods, support vector machine (SVM) and Fisher discriminant analysis (FDA), to classify profiles. The results show WMMC having relatively good performance due to its prediction accuracy, sensitivity and specificity for diagnosis; it can correctly identify features with high discrimination ability from high-dimensional proteomic profile. When feature set size was reduced less than 10, PCA, ICA and LLE lose a lot of classification information, and the prediction accuracies are less than 90%. However, WMMC can extract most classification information. Its prediction accuracies, sensitivities and specificities are more than 95%. Obviously, WMMC is more suitable to proteomic profile classification. For classifier, FDA is sensible to feature extraction.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2403
Author(s):  
Jakub Browarczyk ◽  
Adam Kurowski ◽  
Bozena Kostek

The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was performed on obtained signals. Welch’s method, autoregressive modeling, and discrete wavelet transform were used for feature extraction. Principal component analysis (PCA) was performed in order to reduce the dimensionality of feature vectors. k-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Neural Networks (NN) were employed for classification. Precision, recall, F1 score, as well as a discussion based on statistical analysis, were shown. The paper also contains code utilized in preprocessing and the main part of experiments.


Author(s):  
Ke Li ◽  
Yalei Wu ◽  
Shimin Song ◽  
Yi sun ◽  
Jun Wang ◽  
...  

The measurement of spacecraft electrical characteristics and multi-label classification issues are generally including a large amount of unlabeled test data processing, high-dimensional feature redundancy, time-consumed computation, and identification of slow rate. In this paper, a fuzzy c-means offline (FCM) clustering algorithm and the approximate weighted proximal support vector machine (WPSVM) online recognition approach have been proposed to reduce the feature size and improve the speed of classification of electrical characteristics in the spacecraft. In addition, the main component analysis for the complex signals based on the principal component feature extraction is used for the feature selection process. The data capture contribution approach by using thresholds is furthermore applied to resolve the selection problem of the principal component analysis (PCA), which effectively guarantees the validity and consistency of the data. Experimental results indicate that the proposed approach in this paper can obtain better fault diagnosis results of the spacecraft electrical characteristics’ data, improve the accuracy of identification, and shorten the computing time with high efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tsun-Kuo Lin

This paper developed a principal component analysis (PCA)-integrated algorithm for feature identification in manufacturing; this algorithm is based on an adaptive PCA-based scheme for identifying image features in vision-based inspection. PCA is a commonly used statistical method for pattern recognition tasks, but an effective PCA-based approach for identifying suitable image features in manufacturing has yet to be developed. Unsuitable image features tend to yield poor results when used in conventional visual inspections. Furthermore, research has revealed that the use of unsuitable or redundant features might influence the performance of object detection. To address these problems, the adaptive PCA-based algorithm developed in this study entails the identification of suitable image features using a support vector machine (SVM) model for inspecting of various object images; this approach can be used for solving the inherent problem of detection that occurs when the extraction contains challenging image features in manufacturing processes. The results of experiments indicated that the proposed algorithm can successfully be used to adaptively select appropriate image features. The algorithm combines image feature extraction and PCA/SVM classification to detect patterns in manufacturing. The algorithm was determined to achieve high-performance detection and to outperform the existing methods.


2013 ◽  
Vol 791-793 ◽  
pp. 1961-1964
Author(s):  
Xiao Li Yang ◽  
Qiong He

We propose a biomimetic pattern recognition (BPR) approach for classification of proteomic profile. The proposed approach preprocess profile using iterative minimum in adaptive setting window (IMASW) method for baseline correction, discrete wavelet transform (DWT) for fitting and smoothing, and average total ion normalization (ATIN) for remove the influence of vary amount of sample and degradation over time. Then principal component analysis (PCA) and BPR build classification model. With an optimization of the parameters involved in the modeling, we obtain a satisfactory model for cancer diagnosis in three proteomic profile datasets. The predicted results show that BPR technique is more reliable and efficient than support vector machine (SVM) method.


2020 ◽  
Vol 3 (2) ◽  
pp. 222-235
Author(s):  
Vivian Nwaocha ◽  
◽  
Ayodele Oloyede ◽  
Deborah Ogunlana ◽  
Michael Adegoke ◽  
...  

Face images undergo considerable amount of variations in pose, facial expression and illumination condition. This large variation in facial appearances of the same individual makes most Existing Face Recognition Systems (E-FRS) lack strong discrimination ability and timely inefficient for face representation due to holistic feature extraction technique used. In this paper, a novel face recognition framework, which is an extension of the standard (PCA) and (ICA) denoted as two-dimensional Principal Component Analysis (2D-PCA) and two-dimensional Independent Component Analysis (2D-ICA) respectively is proposed. The choice of 2D was advantageous as image covariance matrix can be constructed directly using original image matrices. The face images used in this study were acquired from the publicly available ORL and AR Face database. The features belonging to similar class were grouped and correlation calculated in the same order. Each technique was decomposed into different components by employing multi-dimensional grouped empirical mode decomposition using Gaussian function. The nearest neighbor (NN) classifier is used for classification. The results of evaluation showed that the 2D-PCA method using ORL database produced RA of 92.5%, PCA produced RA of 75.00%, ICA produced RA of 77.5%, 2D-ICA produced RA of 96.00%. However, 2D-PCA methods using AR database produced RA of 73.56%, PCA produced RA of 62.41%, ICA produced RA of 66.20%, 2D-ICA method produced RA of 77.45%. This study revealed that the developed face recognition framework algorithm achieves an improvement of 18.5% and 11.25% for the ORL and AR databases respectively as against PCA and ICA feature extraction techniques. Keywords: computer vision, dimensionality reduction techniques, face recognition, pattern recognition


Sign in / Sign up

Export Citation Format

Share Document