Adsorption behavior of samarium(III) from aqueous solutions onto PAN@SDS core-shell polymeric adsorbent

2015 ◽  
Vol 103 (6) ◽  
Author(s):  
Mamdoh R. Mahmoud ◽  
Mohamed A. Soliman ◽  
Karam F. Allan

AbstractAdsorption behavior of samarium(III) radionuclides from aqueous solutions onto a novel polyacrylonitrile coated with sodium dodecyl sulfate (PAN@SDS), prepared by gamma radiation-induced polymerization, was studied in this work. The developed polymeric adsorbent was characterized by FT-IR, X-ray diffraction and N

2011 ◽  
Vol 236-238 ◽  
pp. 2004-2007
Author(s):  
Ye Ji ◽  
Hui Ping Shao ◽  
Zhi Meng Guo ◽  
Dong Hua Yang

In order to increase the magnetic fluids in target-based cancer treatment, the Cu2+has been studied in this study. The Fe3O4and Cu0.1Fe0.9O•Fe2O3magnetic nanoparticles were prepared by ultrasonic emulsion method, and then disperse them into water with sodium dodecyl benzene sulfonate (SDBS) as surfactants to make magnetic fluids. The cubic inverse spinel structure of Fe3O4and Cu0.1Fe0.9O•Fe2O3nanoparticles were analyzed by X-ray diffraction technique (XRD).The saturation magnetization of Fe3O4and Cu0.1Fe0.9O•Fe2O3were 79.55 emu•g-1and 75.90 emu•g-1by vibrating sample magnetometer (VSM). The morphologies of nanoparticles were observed by transmission electron microscope (TEM). The particle size was uniform 10-20 nm, and their shape was approximately spherical. The Cu0.1Fe0.9O•Fe2O3magnetic particle functional group and the surface of particle coated with SDBS have been detected by Fourier Transform Infrared Spectroscopy (FT-IR). The magnetic fluids with a high saturation magnetization and stability have been prepared successfully in this study.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 960 ◽  
Author(s):  
Thi Hang Nguyen ◽  
Thi Thuy Linh Nguyen ◽  
Tien Duc Pham ◽  
Thanh Son Le

In the present study, we investigated the removal of an emerging pesticide lindane from aqueous solution using synthesized aluminum hydroxide Al(OH)3 (bayerite) nanomaterials with surface modification by an anionic surfactant sodium dodecyl sulfate (SDS). The Al(OH)3 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and zeta potential. The lindane removal using SDS-modified nano-aluminum hydroxide nanoparticles (SMNAH) achieved removal of up to 93.68%, which was 3.3 times higher than that of nano-aluminum hydroxide nanoparticles. The adsorptive removal conditions were studied and found to have an adsorption time of 60 min, a pH of 6, an adsorbent dosage of 25 mg/mL and an ionic strength of 10 mM NaCl. After reusing four times, the removal efficiency of lindane using SMNAH still reached 75%. Two-step adsorption can fit adsorption isotherms of lindane onto SMNAH at two salt concentrations. On the basis of the change in zeta potential, surface functional groups and adsorption isotherms, we suggest that the formation of a bilayer micelle induced the removal of lindane.


Langmuir ◽  
2006 ◽  
Vol 22 (12) ◽  
pp. 5256-5260 ◽  
Author(s):  
J. Pereira-Lachataignerais ◽  
R. Pons ◽  
H. Amenitsch ◽  
M. Rappolt ◽  
B. Sartori ◽  
...  

2019 ◽  
Vol 62 (4) ◽  
Author(s):  
Mir mohammad Alavi Nikje ◽  
Samira Emami

In this research, the effect of (3-Aminopropyl) triethoxysilane (APTES) modified Fe3O4 (Fe3O4@APTES) core-shell nanomaterials as the recyclable heterocatalyst on the recovery of bisphenol-A (BPA) from hydrolysis of polycarbonate (PC) wastes were investigated. In the evaluated reactions, water and diethylene glycol (DEG) were used as the green solvent composition and the water as well as magnetic heterocatalyst content were optimized. By examining the results of the above-mentioned reactions, it was observed that by using 25 pbw of water and 2 pbw of magnetic heterocatalyst (both based on total waste and solvent weights), BPA achieved in 100% yield. The Fe3O4@APTES nanomaterials as the heterocatalyst can be recovered and reused up to five intervals with our significant activity losses. The resulting BPA and nanomaterials has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and spectroscopic methods (1H NMR, 13C NMR, FT-IR).


2012 ◽  
Vol 16 (04) ◽  
pp. 390-395 ◽  
Author(s):  
Tahereh Poursaberi ◽  
Mostafa Hassanisadi ◽  
Maryam Shanehsaz

A new magnetic nanoadsorbent was developed by treating Fe3O4 nanoparticles with 3-aminopropyltriethoxysilane and nickel(II) — metalloporphyrin, and applied to remove excessive nitrate from aqueous solutions. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to characterize the synthesized nanoparticles. The effect of pH, contact time, sorbent dosage and some co-existing anions present in aqueous solutions was investigated. Regeneration of nitrate adsorbed material was possible with NaOH , the modified magnetic nanoparticles exhibited good reusability.


1988 ◽  
Vol 3 (4) ◽  
pp. 244-245 ◽  
Author(s):  
D.R. Santos Bittencourt

AbstractIndexed X-ray diffraction powder data for three homologous amphiphiles, sodium octyl sulfate (SOS), CH3[CH2]7 OSO3Na, sodium decyl sulfate, CH3[CH2]9OSO3Na (SDS), and sodium dodecyl sulfate CH3[CH2]11OSO3Na (SLS), are reported. Probable space groups for the three compounds are monoclinic P2[3], Pm[6], or P2/m[10]. Refined cell parameters were determined from powder data obtained with a Guinier Camera. Powder data are compared to existing patterns, PDF 4-10 (SOS) and 4-6 (SLS).


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2123
Author(s):  
Maria Râpă ◽  
Maria Stefan ◽  
Paula Popa ◽  
Dana Toloman ◽  
Cristian Leostean ◽  
...  

The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0–1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (˙OOH) radicals as assessed using electron paramagnetic resonance (EPR) spectroscopy coupled with a spin trapping method.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Sign in / Sign up

Export Citation Format

Share Document