Performance Evaluation of S/P System and its Mechanism Analysis

2013 ◽  
Vol 791-793 ◽  
pp. 294-298
Author(s):  
Li Wei Niu ◽  
Xiang Guo Lu ◽  
Hai Hong Zhang ◽  
Li Xin Zhong

Xinbei Oilfield in Jilin is a tectonic lithology reservoir with high porosity, high permeability, thin oil layers and severe heterogeneity, which has entered a period of high water-cut development. Aiming at actual demand of field development, making use of indoor apparatus monitoring and theoretical analysis method, the author evaluated the viscosity, interfacial tension, absorption characteristics, rheological property, viscoelasticity and displacement efficiency of 5 different binary composite systems composed of surfactants and polymer to optimize the binary flooding system. The results show that Daqing Lianhua/Polymer system can achieve ultra-low interfacial tension with crude oil with small absorption, well stability and little effect on viscoelasticity of polymer solution. The system has higher displacement efficiency and stronger mobility control ability, which is recommend as flooding system for oilfield.

2013 ◽  
Vol 774-776 ◽  
pp. 267-270 ◽  
Author(s):  
Li Jun Zhao ◽  
Qing Sheng Li ◽  
Xu Sheng Wang

At present, most of the oil fields have already got in high water cut period. For the problem of enhancing oil recovery, the impacts of pressure gradient, the width of the runner, the height of the oil film, the interfacial tension between oil and water, and viscosity on velocity distribution and stress distribution are considered. Using the constitutional equation of generalized Newtonian fluid under the isothermal condition, the flow equation of the water is set up which can describe the flow of the water flowing in the microscopic pores. A numerical simulation for the model is carried out by using Polyflow. The results show that the more pressure gradient, the greater of the oil film height, the smaller interfacial tension between oil and water, there is the better displacement efficiency.


Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


2021 ◽  
Vol 252 ◽  
pp. 02066
Author(s):  
Dongqi Wang ◽  
Daiyin Yin ◽  
Junda Wang

The composition change of microemulsion system in microemulsion flooding will inevitably cause the change of phase behavior. Microemulsion with different phase types directly affects its performance and displacement efficiency of microemulsion flooding. Therefore, in order to accurately describe this change, this paper, starting from the composition of microemulsion, gives the physicochemical properties characterization methods of microemulsion phase density, viscosity and interfacial tension, and simulates the change of physicochemical properties of microemulsion phase caused by microemulsion entering the high water-oil ratio zone in the process of flooding. The research results are of great significance for screening microemulsion systems and determining the displacement efficiency.


2012 ◽  
Vol 535-537 ◽  
pp. 1163-1166 ◽  
Author(s):  
Wen Guo Ma ◽  
Quan Guo ◽  
Dan Li ◽  
Ren Qiang Liu ◽  
Hui Fen Xia

The polymer system in low interfacial tension conditions is a important technology in oilfield production. Through the Using both rheometer(HAAKE RS150) and interface tension instrument(TS500), the effect of interfacial tension character and viscosity caused by the changing of polymer mass concentration is studied in 30 degrees celsius condition. The man-made core displacement oil experiments and visual model displacement oil experiments were carried out, the displacement efficiency of polymer solution with low interfacial tension after water flooding or polymer flooding was analyzed. The results indicate that the interfacial tension between polymer system with low interfacial tension and oil first reduced, then increased with the increasing of polymer mass concentration, when the polymer mass concentration changes form 0.5gram/Litre to 1.5gram/Litre, the interfacial tension is 10-3 milli-Newton/meter order of magnitude, when the polymer mass concentration increased to 2.0gram/Litre, the interfacial tension is 10-2 milli-Newton/meter order of magnitude. With the changing the polymer mass concentration of polymer system from 0.5gram/Litre, 1.0gram/Litre and 2.0gram/Litre, the viscosity of polymer system with low interfacial tension increased obviously. The recovery ratio can be enhanced further by polymer solution with low interfacial tension after both water flooding and polymer flooding.


2021 ◽  
pp. 014459872199654
Author(s):  
Yu Bai ◽  
Shangqi Liu ◽  
Guangyue Liang ◽  
Yang Liu ◽  
Yuxin Chen ◽  
...  

Wormlike micelles formed by amidosulfobetaine surfactants present advantage in increasing viscosity, salt-tolerance, thermal-stability and shear-resistance. In the past few years, much attention has been paid on rheology behaviours of amidosulfobetaine surfactants that normally bear C18 or shorter tails. Properties and oil displacement performances of the wormlike micelles formed by counterparts bearing the long carbon chain have not been well documented. In this paper, the various properties of C22-tailed amidosulfobetaine surfactant EHSB under high salinity (TDS = 40g/L) are investigated systematically, including solubility, rheology and interfacial activity. Moreover, its oil displacement performance is studied for the first time. These properties are first compared with those of C16-tailed counterpart HDPS. Results show that the Krafft temperature( TK) of EHSB decreases from above 100°C to 53°C with the increase of TDS to 40 g/L. Increasing concentration of EHSB in the semidilute region induces micelle growth from rod-like micelles to wormlike micelles, and then the worms become entangled or branched to form viscoelastic micelle solution, which will increase the viscosity by several orders of magnitude. The interfacial tension with oil can be reduced to ultra-low level by EHSB solution with concentration below 4.5 mM. Possessing dual functions of mobility control and reducing interfacial tension, wormlike micelles formed by EHSB present a good displacement effect as a flooding system, which is more than 10% higher than HPAM with the same viscosity. Compared with the shorter tailed surfactant, the ultra-long tailed surfactant is more efficient in enhancing viscosity and reducing interfacial tension, so as to enhance more oil recovery. Our work provides a helpful insight for comprehending surfactant-based viscoelastic fluid and provides a new viscoelastic surfactant flooding agent which is quite efficient in chemical flooding of offshore oilfield.


Author(s):  
Anzhu Xu ◽  
Fachao Shan ◽  
Xiao Yang ◽  
Jiaqi Li ◽  
Chenggang Wang ◽  
...  

AbstractChanneling between injectors and producers leads to bypassed oil left in the reservoir, which is one of most common reasons that wells in mature oil fields experience high water cut after long-term waterflooding. Identification and evaluation of the higher permeable channels (thief zones) are the key to effectively plug these thief zones and improve the conformance of water flood. This study applies three different methods to identify and evaluate the thief zones of a water injection project in North Buzazi Oilfield, a thick-bedded unconsolidated sandstone heavy oil reservoir in Manghestau, Kazakhstan. The thief zones, which evolve as a result of formation erosion and sand production, are identified and classified with respect to four different levels of significance using fuzzy comprehensive evaluation, production/injection profile method and pressure index (PI) methods. Good consistency is observed among the identification results using these methods. Finally, we present two ways to quantitatively evaluate the characteristics of the thief zones using water–oil-ratio as the input, which can be readily applied for future field development design.


2021 ◽  
Author(s):  
Ali Abdullah Al-Azmi ◽  
Thanyan Ahmed Al-Yaqout ◽  
Dalal Yousef Al-Jutaili ◽  
Kutbuddin Bhatia ◽  
Amr Abdelbaky ◽  
...  

Abstract Excessive water production from hydrocarbon reservoirs is a serious issue faced by the industry, particularly for mature fields. Higher water cut adversely affects the economics of the producing wells, thus it is undesirable. Disposal and reinjection of ever-increasing volumes of produced water poses additional liability. A significant challenge faced in the mature Umm Gudair field is assuring hydrocarbon flow through high water-prone intervals. In recent times, field development strategies have begun to prioritize new well intervention technology because of the advantages of minimized water cut, higher production rates, and improved overall reserve recovery (hydrocarbon in place). This paper discusses the field implementation of a downhole chemical methodology, "first of its kind" designed and applied, that has created a positive impact in overall productivity. To solve these challenges, the treatment was highly modified as fit-for-purpose to address the unique challenges of electric submersible pump (ESP)-driven well operations, formation technical difficulties, high-stakes economics, and high-water potential from these formations. A unique Organically Crosslinked Polymer (OCP) system with a tail-in Rigid Setting Material (RSM) system was implemented as a porosity-fill sealant in a high-water-cut well to selectively reduce water production. A pre-flush was pumped ahead of the treatment to remove deposits that could have prevented the polymer from effective gelation. The treatment was then overdisplaced with brine. The OCP system is injected into the formation as a low viscosity solution using the spot and hesitation squeeze method via bullheading. It activates at a predicted time to form a 3-D rigid hydrogel to completely shut off matrix permeability, fractures, fissures, and channels, thus creating an artificial barrier seal in the reservoir. The tail-in near wellbore RSM system rapidly develops a high compressive strength to avoid any formation loss before setting. This holistic approach helps to create a robust sealant for blocking the unwanted water-producing zone, impeding water flow, and facilitating increased hydrocarbon flow. A direct comparison of the application of this system with conventional cement squeeze treatments is presented to illustrate the advantage of having a deep matrix penetration for a more efficient water shutoff in this field. A direct result of the implemented treatment is that the post-operation well test and production data showed a high-sustained production at lower rate with significantly reduced watercut, confirming this technology is one of successful chemical water shut off techniques this field. This paper summarizes the candidate selection, design processes, challenges encountered, and production response, and can be considered a best practice for addressing high water production challenges in similar conditions in other fields.


2012 ◽  
Vol 39 (3) ◽  
pp. 362-370 ◽  
Author(s):  
Shuhong JI ◽  
Changbing TIAN ◽  
Chengfang SHI ◽  
Jigen YE ◽  
Zubo ZHANG ◽  
...  

2021 ◽  
pp. 192-203
Author(s):  
Mustafa Kamil Shamkhi ◽  
Mohammed Salih Aljawad

Rumaila supergiant oilfield, located in Southern Iraq has a huge footprint and is considered as the second largest oilfield in the world. It contains many productive reservoirs, some known but without produced zones, and significant exploration potential. A fault divides the field into two domes to the north and south. Mishrif reservoir is the main producing reservoir in the North Rumaila oilfield. It has been producing for more than 40 years and is under depletion. However, it was subjected to water injection processes in 2015, which assisted in recovery and pressure support. Thus, requirements of managing flooding strategies and water-cut limitations are necessary in the next stages of the field life.      In this paper, sector modeling was applied to a specific portion of the field, rather than full-field modeling, to accelerate history matching strategy and correlate static to dynamic models’ efficiently, with a minimum level of tolerance. The sector was modeled by surrounding with additional grid blocks and two pseudo wells to achieve a good matching with actual available data.      PVT data were used for fluid modeling of a well contained in the sector, and two rock functions were inserted to the model to achieve acceptable history matching. Twelve wells were considered in this research, two of them were injectors and the remaining are producers. For future performance, some of these wells were subjected to new completion and workover processes for field development and pressure maintenance. The importance of the development plan is to represent a way for field development without new wells to be drilled. This was conducted by adding perforations to some wells, plugging the high water-cut production zones, changing production and injection rates, and converting the producers to injectors.


Sign in / Sign up

Export Citation Format

Share Document