scholarly journals Physicochemical Properties and its Variation Law of Microemulsion Phase When Microemulsion Flooding

2021 ◽  
Vol 252 ◽  
pp. 02066
Author(s):  
Dongqi Wang ◽  
Daiyin Yin ◽  
Junda Wang

The composition change of microemulsion system in microemulsion flooding will inevitably cause the change of phase behavior. Microemulsion with different phase types directly affects its performance and displacement efficiency of microemulsion flooding. Therefore, in order to accurately describe this change, this paper, starting from the composition of microemulsion, gives the physicochemical properties characterization methods of microemulsion phase density, viscosity and interfacial tension, and simulates the change of physicochemical properties of microemulsion phase caused by microemulsion entering the high water-oil ratio zone in the process of flooding. The research results are of great significance for screening microemulsion systems and determining the displacement efficiency.

1976 ◽  
Vol 16 (03) ◽  
pp. 147-160 ◽  
Author(s):  
R.N. Healy ◽  
R.L. Reed ◽  
D.G. Stenmark

Abstract Economical microemulsion flooding inevitably involves microemulsion phases immiscible with oil or water, or both; oil recovery is largely affected by displacement efficiency during the immiscible regime. Therefore, it is essential to understand the role of interfacial tension in relation to multiphase microemulsion behavior. Three basic types of multiphase systems are identified and used to label phase transitions that occur when changes are made in salinity, temperature, oil composition, surfactant structure, cosolvent, and dissolved solids in the aqueous phase. Directional effects of these changes on phase behavior, interfacial tension, and solubilization parameter are tabulated for the alkyl aryl sufonates studied. A relationship between interfacial tension and phase behavior is established. This provides the phase behavior is established. This provides the basis for a convenient method for preliminary screening of surfactants for oil recovery. Interfacial tensions were found to correlate with the solubilization parameter for the various microemulsion phases, a result that can substantially reduce the number of interfacial tensions that must be determined experimentally for a given application. Introduction A previous paper established that microemulsion flooding is a locally miscible process until slug breakdown and is an immiscible, rate-dependent displacement thereafter; furthermore, for an effective flood, most of the oil recovered is acquired during the immiscible regime. An extensive study of single-phase regions defined classes of micellar structures for a particular surfactant; however, it was subsequently shown these did not affect oil recovery, provided viscous, lamellar structures were avoided. Optimal salinity was introduced as defining a ternary diagram having the least extensive multiphase region, a desirable feature in that locally miscible displacement is prolonged. Immiscible displacement after slug breakdown is known to depend on interfacial tension through its inclusion in the capillary number. A brief study showed chat interfacial tension varied widely throughout the multiphase region; accordingly, it is anticipated that oil recovery will depend on details of multiphase behavior in relation to interfacial tension, as well as on injection composition. Consider a flood sufficiently advanced that the microemulsion slug has broken down. A microemulsion phase remains that is immiscible with water or oil, phase remains that is immiscible with water or oil, or both, and displacement has assumed an immiscible character. The problem is twofold: to design a microemulsion slug that effectively displaces oil at the front and that is effectively displaced by water at the back. Both aspects are essential and, therefore, both microemulsion-oil and microemulsion-water interfacial tensions must be very low. The condition where these two tensions are low and equal will be of particular significance. The purpose of this paper is to explore physicochemical properties of multiphase physicochemical properties of multiphase microemulsion systems with a view toward understanding immiscible aspects of microemulsion flooding, and with the expectation of developing systematic screening procedures useful for design of optimal floods. Equilibration is an essential part of this study. Even the simplest of these systems is so complex it may well happen that nonequilibrium effects will never be understood sufficiently to be usefully accommodated in mathematical simulation of microemulsion flooding. In any event, equilibration, although time consuming, leads to a coherent picture of multiphase behavior that can be correlated with flooding results. Multiphase behavior of "simple" ternary systems divides into three basic classes. Dependence of phase behavior on salinity, with respect to these phase behavior on salinity, with respect to these classes, leads to correlations of interfacial tension with the solubilization parameter. These correlations are studied in relation to surfactant structure, temperature, cosolvents, oil composition, and brine composition. Optimal salinity again plays an important role, especially in relation to interfacial tension. SPEJ P. 147


1985 ◽  
Vol 25 (05) ◽  
pp. 665-678 ◽  
Author(s):  
Bruce T. Campbell ◽  
Franklin M. Orr

Abstract Results of visual observations of high-pressure CO2 floods are reported. The displacements were performed in two-dimensional (2D) pore networks etched in glass plates. Results of secondary and tertiary first-contact miscible displacements and secondary and tertiary multiple-contact miscible displacements are compared. Three displacements with no water present were performed in each of three pore networks:displacement of a refined oil by the same oil dyed a different color;displacement of a refined oil by CO2 (first-contact miscible); anddisplacement of a crude oil at a pressure above the minimum miscibility pressure. In addition, three tertiary displacements were performed in the same pore networks;displacement of the refined oil by water, followed by displacement by the same refined oil dyed to distinguish it from the original oil;tertiary displacement of the refined oil by CO2; andtertiary displacement of crude oil by CO2. In addition, recovery of oil from dead-end pores, with and without water barriers shielding the oil, was investigated. Visual observations of pore-level displacement events indicate that CO2 displaced oil much more efficiently in both first-contact and multiple-contact miscible displacements when water was absent. In tertiary displacements of a refined oil, CO2 effectively displaced the oil it contacted, but high water saturations restricted access of CO2 to the oil. The low viscosity of CO2 aggravated effects of high water saturations because the CO2 did not displace water efficiently. CO2 did, however, contact trapped oil by diffusing through water to reach, to swell, and to reconnect isolated droplets. Finally, CO2 displaced crude oil more efficiently than it did the refined oil in tertiary displacements. Differences in wetting behavior between the refined and crude oils appear to account for the different flow behavior. Introduction If high-pressure CO2 displaces oil in a one-dimensional (1D), uniform porous medium (in which the effects of viscous fingering are necessarily absent), the displacement efficiency is controlled by the phase behavior of the CO2/crude-oil mixtures. The conventional description of the effects of phase behavior was given by Hutchinson and Braun1 for vaporizing gas drives and was extended to CO2 systems by Rathmell et al.2 In a rigorous mathematical treatment of the flow of three-component mixtures. Helfferich3 proved that the displacement will develop miscibility if the oil composition lies outside the region of tie-line extensions on a ternary diagram. Helfferich's analysis was for 1D flows in which fluids are mixed well locally, and the effects of dispersion are absent. Sigmund et al.,4 Gardner et al.,5 and Orr et al.6 showed that results of slim-tube displacements, which are nearly 1D and come close to eliminating the effects of viscous instability, can be predicted quantitatively by 1D process simulations based on independent measurements of the phase behavior and fluid properties of the CO2/crude-oil mixtures. Thus there is good experimental confirmation that the simple theory of the effects of phase behavior on displacement performance describes accurately the behavior of flow in an ideal displacement, such as a slim tube. In a CO2 flood in reservoir rock, however, a variety of other factors will influence process performance. Because the viscosity CO2 is much lower than that of most oils, viscous instability will limit the sweep efficiency of the injected CO2. In addition, Gardner and Ypma7 predicted, based on 2D simulations of the growth of a viscous finger, that an interaction between viscous instability and phase behavior would lead to higher residual oil saturation in regions penetrated by a viscous finger. Pore-structure heterogeneity may also influence displacement efficiency. Spence and Watkins8 found that residual oil saturations after CO2 waterfloods increased as the heterogeneity of the core increased. Several investigators have reported that high water saturations can alter mixing between oil and injected solvent. Raimondi and Torcaso9 found, in displacements in Berea sandstone cores, that significant fractions of the oil phase could not be contacted by injected solvent when the water saturation was high. Thomas et al.10 reported that a portion of the nonwetting phase can exist in "dendritic" pores whose shapes were determined by the surrounding wetting phase. They argued that material in the dendritic pores mixed with fluid in the flowing fraction only by diffusion. Stalkup11 and Shelton and Schneider12 also investigated effects of mobile water saturations in miscible displacements. Stalkup found that the flowing fraction decreased as the water saturation increased. Shelton and Schneider reported that the presence of a second mobile phase slowed recovery of either phase, but the nonwetting phase was affected more strongly. In their tests, all of the wetting phase was recovered by a miscible displacement, but significant amounts of nonwetting phase remained unrecovered.


2013 ◽  
Vol 791-793 ◽  
pp. 294-298
Author(s):  
Li Wei Niu ◽  
Xiang Guo Lu ◽  
Hai Hong Zhang ◽  
Li Xin Zhong

Xinbei Oilfield in Jilin is a tectonic lithology reservoir with high porosity, high permeability, thin oil layers and severe heterogeneity, which has entered a period of high water-cut development. Aiming at actual demand of field development, making use of indoor apparatus monitoring and theoretical analysis method, the author evaluated the viscosity, interfacial tension, absorption characteristics, rheological property, viscoelasticity and displacement efficiency of 5 different binary composite systems composed of surfactants and polymer to optimize the binary flooding system. The results show that Daqing Lianhua/Polymer system can achieve ultra-low interfacial tension with crude oil with small absorption, well stability and little effect on viscoelasticity of polymer solution. The system has higher displacement efficiency and stronger mobility control ability, which is recommend as flooding system for oilfield.


1980 ◽  
Vol 20 (06) ◽  
pp. 459-472 ◽  
Author(s):  
G.P. Willhite ◽  
D.W. Green ◽  
D.M. Okoye ◽  
M.D. Looney

Abstract Microemulsions located in a narrow single-phase region on the phase diagram for the quaternary system consisting of nonane, isopropyl alcohol, Witco TRS 10-80 petroleum sulfonate, and brine were used to investigate the effect of phase behavior on displacement efficiency of the micellar flooding process. Microemulsion floods were conducted at reservoir rates in 4-ft (1.22-m) Berea cores containing brine and residual nonane. Two floods were made using large (1.0-PV) slugs. A third flood used a 0.1-PV slug followed by a mobility buffer of polyacrylamide. Extensive analyses of the core effluents were made for water, nonane, alcohol, and mono- and polysulfonates. An oil bank developed which broke through at 0.08 to 0.1 PV, and 48 to 700/0 of the oil was recovered in this bank which preceeded breakthrough of monosulfonate and alcohol. Coincidental with the arrival of these components of the slug, the effluent became a milky white macroemulsion which partially separated upon standing. Additional oil was recovered with the macroemulsion. Ultimate recoveries were 90 to 100% of the residual oil. Low apparent interfacial tension was observed between the emulsion and nonane. Alcohol arrived in the effluent at the same time as monosulfonate even though there was extensive adsorption of the sulfonate. Further, alcohol appeared in the effluent well after sulfonate production had ceased, indicating retention of the alcohol in the core. A qualitative model describing the displacement process was inferred from the appearance of the produced fluids and the analyses of the effluents. Introduction Surfactant flooding (micellar or microemulsion) is one of the enhanced oil recovery methods being developed to recover residual oil left after waterflooding. Two approaches to surfactant flooding have evolved in practice. In one, relatively large volumes (0.25 PV) of low-concentration surfactant solution are used to create low-tension waterfloods.1,2 Oil is mobilized by reduction of interfacial tension to levels on the order of about 10−3 dyne/ cm (10−3 mN/m). The second approach involves the application of small volumes (0.03 to 0.1 PV) of high-concentration solutions.3,4 These solutions are miscible to some extent with the formation water and/or crude oil. Consequently, miscibility between the surfactant solution and oil and/or low interfacial tensions contribute to the oil displacement efficiency. The relative importance of these mechanisms has been the subject of several papers5,6 and discussions.7,8


2013 ◽  
Vol 774-776 ◽  
pp. 267-270 ◽  
Author(s):  
Li Jun Zhao ◽  
Qing Sheng Li ◽  
Xu Sheng Wang

At present, most of the oil fields have already got in high water cut period. For the problem of enhancing oil recovery, the impacts of pressure gradient, the width of the runner, the height of the oil film, the interfacial tension between oil and water, and viscosity on velocity distribution and stress distribution are considered. Using the constitutional equation of generalized Newtonian fluid under the isothermal condition, the flow equation of the water is set up which can describe the flow of the water flowing in the microscopic pores. A numerical simulation for the model is carried out by using Polyflow. The results show that the more pressure gradient, the greater of the oil film height, the smaller interfacial tension between oil and water, there is the better displacement efficiency.


2014 ◽  
pp. 87-92
Author(s):  
Thi Hoai Nguyen ◽  
Thi Van Thi Tran ◽  
Trung Hieu Le ◽  
Thi Mai Huong Vo

Background: There are many beneficial effects such as reducing the risk of obesity, diabetes, hyperlipidemia and hypercholesterolemia from Amorphophallus sp. This reports are research results of physicochemical properties of glucomannan flour from tubers of Amorphophallus paeoniifolius cultivated in Thua Thien Hue. Materials: Glucomannan flour from tubers of Amorphophallus paeoniifolius (Dennst) Nicolson – Araceae cultivated in Thua Thien Hue. Method: Identify the quantity and physicochemical properties by many methods such as using enzymes, chemistry, physical chemistry, spectroscopic methods, laser analysis. Results: Identified starch and glucomannan quantity, physicochemical properties and indicators of microbiological of glucomannan flour. Conclusion: From the achieved results set up quality standards of glucomannan flour from tubers of Amorphophallus paeoniifolius cultivated in Thua Thien Hue. Key words: Glucomannan, starch, β-amylase.


Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


1981 ◽  
Vol 21 (06) ◽  
pp. 747-762 ◽  
Author(s):  
Karl E. Bennett ◽  
Craig H.K. Phelps ◽  
H. Ted Davis ◽  
L.E. Scriven

Abstract The phase behavior of microemulsions of brine, hydrocarbon, alcohol, and a pure alkyl aryl sulfonate-sodium 4-(1-heptylnonyl) benzenesulfonate (SHBS or Texas 1) was investigated as a function of the concentration of salt (NaCl, MgCl2, or CaCl2), the hydrocarbon (n-alkanes, octane to hexadecane), the alcohol (butyl and amyl isomers), the concentration of surfactant, and temperature. The phase behavior mimics that of similar systems with the commercial surfactant Witco TRS 10–80. The phase volumes follow published trends, though with exceptions.A mathematical framework is presented for modeling phase behavior in a manner consistent with the thermodynamically required critical tie lines and plait point progressions from the critical endpoints. Hand's scheme for modeling binodals and Pope and Nelson's approach to modeling the evolution of the surfactant-rich third phase are extended to satisfy these requirements.An examination of model-generated progressions of ternary phase diagrams enhances understanding of the experimental data and reveals correlations of relative phase volumes (volume uptakes) with location of the mixing point (overall composition) relative to the height of the three-phase region and the locations of the critical tie lines (critical endpoints and conjugate phases). The correlations account, on thermodynamic grounds, for cases in which the surfactant is present in more than one phase or the phase volumes change discontinuously, both cases being observed in the experimental study. Introduction The phase behavior of a surfactant-based micellar formulation is one of the major factors governing the displacement efficiency of any chemical flooding process employing that formulation. Knowledge of phase behavior is, thus, important for the interpretation of laboratory core floods, the design of flooding processes, and the evaluation of field tests. Phase behavior is connected intimately with other determinants of the flooding process, such as interfacial tension and viscosity. Since the number of equilibrium phases and their volumes and appearances are easier to measure and observe than phase compositions, viscosities, and interfacial tensions, there is great interest in understanding the phase-volume/phase-property relationships. Commercial surfactants, such as Witco TRS 10-80, are sulfonates of crude or partially refined oil. While they seem to be the most economically practicable surfactants for micellar flooding, their behavior, particularly with crude oils and reservoir brines, can be difficult to interpret, the phases varying with time and from batch to batch. Phase behavior studies with a small number of components, in conjunction with a theoretical understanding of phase behavior progressions, can aid in understanding more complex behavior. In particular, one can begin to appreciate which seemingly abnormal experimental observations (e.g., surfactant present in more than one phase or a discontinuity in phase volume trends) are merely features of certain regions of any phase diagram and which are peculiar to the specific crude oil or commercial surfactant used in the study.We report here experimental studies of the phase behavior of microemulsions of a pure sulfonate surfactant (Texas 1), a single normal alkane hydrocarbon, a simple brine, and a small amount of a suitable alcohol as cosurfactant or cosolvent. The controlled variables are hydrocarbon chain length, alcohol, salinity, salt type (NaCl, MgCl2, or CaCl2), surfactant purity, surfactant concentration, and temperature. Many of these experimental data were presented earlier. SPEJ P. 747^


Sign in / Sign up

Export Citation Format

Share Document