Performance Evaluation and Prediction of Escalator Structure Using FEM-Based Analysis

2013 ◽  
Vol 819 ◽  
pp. 59-64 ◽  
Author(s):  
Jian Cai Zhao ◽  
Xi Chen ◽  
Ze Yu Zhao

The paper applied Finite Element Method (FEM) to study performance of escalator structure. A case study is given to demonstrate the method of the FEM. To validate the results of FEM, some experiments were conducted. The results show that all the test samples meet the requirements of the truss, and the experimental results verify the numerical calculation results.

1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Author(s):  
Luis Santos-Correa ◽  
Diego Pineda-Maigua ◽  
Fernando Ortega-Loza ◽  
Jhonatan Meza-Cartagena ◽  
Ignacio Abril-Naranjo ◽  
...  

In this paper, SiCp /Al2O3 composites were fabricated through directed metal oxidation process. Experimental results of these composites validated or compared with Finite Element Method (FEM). Finite Element has become one in all the foremost necessary tools offered to an engineer. The finite part methodology is employed to resolve advanced analysis issues. In this paper, Finite Element Method based ANSYS software is used to FEM model to determine mechanical properties of SiC reinforced Al2O3 matrix composite by changing volume fractions of SiC. The comparison of experimental results with Finite element analysis provides detailed information about the results of these comparisons. The FA was competent of predict the information for several scenario quite fine


2021 ◽  
Vol 4 (4) ◽  
pp. 11-31
Author(s):  
S. Koryagina

the article presents the principles and algorithms of the finite element method in solving geotechnical prob-lems taking into account seismic impacts for determining the stress-strain state of structures and slope stabil-ity, implemented in the Midas GTS NX software package. GTS NX allows you to perform calculations of various types of geotechnical problems and solve complex geotechnical problems in a single software envi-ronment. GTS NX covers the entire range of engineering and geotechnical projects, including calculations of the "base-structure" system, deep pits with various mounting options, tunnels of complex shape, consolida-tion and filtration calculations, as well as calculations for dynamic actions and stability calculations. At the same time, all types of calculations in GTS NX can be performed both in 2D and in 3D. The author does not claim to be the author of the finite element method, but he cannot do without pointing out the basic equa-tions, as this affects the definition of the boundaries of use, the formulation of algorithms for constructing calculation schemes and the analysis of calculation results.


2021 ◽  
Vol 14 (2) ◽  
pp. 54-66
Author(s):  
Svetlana Sazonova ◽  
Viktor Asminin ◽  
Alla Zvyaginceva

The sequence of application of the mixed method for calculating internal forces in statically indeterminate frames with elements of increased rigidity is given. The main system is chosen for the frame with one kinematic and one force unknown. The canonical equations of the mixed method are written, taking into account their meaning. Completed the construction of the final diagram of the bending moments and all the necessary calculations and checks. When calculating integrals, Vereshchagin's rule is applied. The solution of the problem is checked by performing the calculation using the computer program STAB12.EXE; the results of the calculations are numerically verified using the finite element method. An example of the formation of the initial data for the STAB12.EXE program and the subsequent processing of the calculation results, the rules for comparing the numerical results and the results obtained in the calculation of the frame by the mixed method are given.


Author(s):  
Robert J. Bernhard ◽  
John E. Huff

Abstract Energy flow analysis methods, particularly as implemented using the finite element method, are useful as design techniques for high frequency structural-acoustic applications. In this paper, the derivation of energy flow analysis techniques are summarized. Particular attention is given to the specification of joint models for situations where there is a discontinuity in either geometric properties or material properties. The finite element formulation of this approach is also summarized. A case study is included to illustrate the utility of the method as a design technique.


Sign in / Sign up

Export Citation Format

Share Document