Effect of Exogenous Galactose on EPS Production during Bioleaching of Pyrite by Acidithiobacillus ferrooxidans

2013 ◽  
Vol 825 ◽  
pp. 125-128 ◽  
Author(s):  
Beatriz Pavez ◽  
Albert Saavedra ◽  
Mauricio Diaz ◽  
Juan Carlos Gentina

Extracellular polymeric substances (EPS) play an important role in the attachment of bacteria to sulphide minerals, biofilm formation and efficiency of the bioleaching process. Previous studies have suggested a potential connection between galactose and EPS formation. In this context, the influence of exogenous galactose on EPS formation during the bioleaching of pyrite was studied. In order to fully adapt the microorganism to bioleaching conditions it was performed a total of five consecutive sub cultures, one every fifteen days, taking for each one inocula from previous culture in shake flasks with 200 ml of fermentation medium at 30°C, 200 rpm, 40 gL-1 mineral and an initial pH of 1,8. Assays were performed in a medium supplemented with exogenous galactose (0.25% w/v) and without exogenous galactose (control), both with an initial concentration of ferric sulphate in the first three sub cultures of 5 gL-1, decreasing in the last two sub cultures to 2.5 gL-1. Samples of three cultures in both conditions were analyzed using confocal laser scanning microscopy (CLSM) labelling the cells with propidium iodide and EPS carbohydrates with Wheat Germ Agglutinin (WGA). Samples obtained on the last day of the fifth culture showed that the EPS layer on the particle surface was 5.00 μm3/μm2 in the case of the control condition and 6.10 μm3/μm2 when bioleaching was carried out in the presence of exogenous galactose. Also it was observed that in the fifth sub culture the volumetric productivity of total iron in the control experiment was 0.0065 gL-1.h-1 compared with 0.0076 gL-1.h-1 obtained in presence of galactose. The results reveal that the presence of galactose in the bioleaching solution stimulates EPS's formation and apparently also favour the pyrite bioleaching process.

2020 ◽  
Author(s):  
S Ghods ◽  
Ian Sims ◽  
MF Moradali ◽  
BHA Rehma

© 2015, American Society for Microbiology. Pseudomonas syringae pv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused by P. syringae pv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain of P. syringae pv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed by P. syringae pv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced by P. syringae pv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence that P. syringae pv. actinidiae NZ V-13 produces two polysaccharides, a branched α-D-rhamnan with side chains of terminal α-D-Fucf and an α-D-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% of P. syringae pv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment of P. syringae pv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic against P. syringae pv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition of P. syringae pv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds.


2011 ◽  
Vol 78 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
Anna Rusznyák ◽  
Denise M. Akob ◽  
Sándor Nietzsche ◽  
Karin Eusterhues ◽  
Kai Uwe Totsche ◽  
...  

ABSTRACTKarstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the generaArthrobacter,Flavobacterium,Pseudomonas,Rhodococcus,Serratia, andStenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation,Arthrobacter sulfonivoransandRhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite.R. globerulusformed idiomorphous crystals with rhombohedral morphology, whereasA. sulfonivoransformed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Tatiana Ramirez-Mora ◽  
Claudia Dávila-Pérez ◽  
Fernando Torres-Méndez ◽  
Grettel Valle-Bourrouet

Endodontic persistent infections are often mediated by bacterial biofilms. This mode of bacterial growth is characterized by the presence of a matrix mainly composed of extracellular polymeric substances (EPSs) that protect the encased microorganisms. To establish better control and disinfection protocols, elucidation of the main components of biofilm matrices present in endodontic infections is required. The aim of the present study was to characterize the principal components ofE. faecalis,A. naeslundii, and dual-species biofilm matrices by means of Raman spectroscopy and confocal scanning laser microscopy (CSLM) techniques. The total biomass of biofilms was quantified via crystal violet assays, and the monospecies biofilms showed higher biomass than the dual-species biofilms. Raman spectroscopy and confocal laser scanning microscopy were used to identify the biochemical composition and structure of the biofilm matrices. Spectra originating from the biofilms of two endodontic pathogens show the presence of carbohydrates, proteins, fatty acids, and nucleic acids in all samples; however, variation in the levels of expression of these biomolecules allows spectroscopic differentiation of the biofilms using principal component analysis. This study is the first attempt to identify the composition of monospecies and dual-species biofilms of endodontic origin. Our data provides an important approach to the understanding of molecular dynamics of endodontic infections.


2020 ◽  
Vol 12 (21) ◽  
pp. 8863
Author(s):  
Jie Mei ◽  
Huize Chen ◽  
Qiang Liao ◽  
Abdul-Sattar Nizami ◽  
Ao Xia ◽  
...  

Dark fermentation of organic wastes, such as food waste and algae, via mixed hydrogen-producing bacteria (HPB) is considered a sustainable approach for hydrogen production. The biofilm system protects microorganisms from the harmful environment and avoids the excessive loss of bacteria caused by washout, which ensures that the dark fermentation process remains stable. In this study, a downflow anaerobic packed-bed reactor was commissioned to investigate the biofilm formation process of mixed HPB under various operational parameters. Scanning electron microscopy indicated changes in surface morphology during the biofilm formation period. Proteins and polysaccharides in extracellular polymeric substances were identified by confocal laser scanning microscopy to reveal their distribution characteristics. A hydraulic retention time of 0.5 d, a substrate concentration of 15 g/L and an HPB inoculum ratio of 35% were identified as the optimal operational parameters for biofilm formation. The diversity of bacteria between suspension and biofilm showed significantly different distributions; Clostridiales and Lactobacillales were identified as the dominant orders in the biofilm formation process. The abundances of Clostridiales and Lactobacillales were 15.1% and 56.2% in the biofilm, respectively.


2007 ◽  
Vol 73 (19) ◽  
pp. 6233-6240 ◽  
Author(s):  
S. D. Weber ◽  
W. Ludwig ◽  
K.-H. Schleifer ◽  
J. Fried

ABSTRACT Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules.


2003 ◽  
Vol 69 (9) ◽  
pp. 5443-5452 ◽  
Author(s):  
Tom J. Battin ◽  
Louis A. Kaplan ◽  
J. Denis Newbold ◽  
Xianhao Cheng ◽  
Claude Hansen

ABSTRACT Current velocity affected the architecture and dynamics of natural, multiphyla, and cross-trophic level biofilms from a forested piedmont stream. We monitored the development and activity of biofilms in streamside flumes operated under two flow regimes (slow [0.065 m s−1] and fast [0.23 m s−1]) by combined confocal laser scanning microscopy with cryosectioning to observe biofilm structure and composition. Biofilm growth started as bacterial microcolonies embedded in extracellular polymeric substances and transformed into ripple-like structures and ultimately conspicuous quasihexagonal networks. These structures were particularly pronounced in biofilms grown under slow current velocities and were characterized by the prominence of pennate diatoms oriented along their long axes to form the hexagons. Microstructural heterogeneity was dynamic, and biofilms that developed under slower velocities were thicker and had larger surface sinuosity and higher areal densities than their counterparts exposed to higher velocities. Surface sinuosity and biofilm fragmentation increased with thickness, and these changes likely reduced resistance to the mass transfer of solutes from the water column into the biofilms. Nevertheless, estimates of dissolved organic carbon uptake and microbial growth suggested that internal cycling of carbon was more important in thick biofilms grown in slow flow conditions. High-pressure liquid chromatography-pulsed amperometric detection analyses of exopolysaccharides documented a temporal shift in monosaccharide composition as the glucose levels decreased and the levels of rhamnose, galactose, mannose, xylose, and arabinose increased. We attribute this change in chemical composition to the accumulation of diatoms and increased incorporation of detrital particles in mature biofilms.


2009 ◽  
Vol 76 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Elanna Bester ◽  
Otini Kroukamp ◽  
Gideon M. Wolfaardt ◽  
Leandro Boonzaaier ◽  
Steven N. Liss

ABSTRACT The measurement of carbon dioxide production rates as an indication of metabolic activity was applied to study biofilm development and response of Pseudomonas sp. biofilms to an environmental disturbance in the form of a moving air-liquid interface (i.e., shear). A differential response in biofilm cohesiveness was observed after bubble perturbation, and the biofilm layers were operationally defined as either shear-susceptible or non-shear-susceptible. Confocal laser scanning microscopy and image analysis showed a significant reduction in biofilm thickness and biomass after the removal of the shear-susceptible biofilm layer, as well as notable changes in the roughness coefficient and surface-to-biovolume ratio. These changes were accompanied by a 72% reduction of whole-biofilm CO2 production; however, the non-shear-susceptible region of the biofilm responded rapidly after the removal of the overlying cells and extracellular polymeric substances (EPS) along with the associated changes in nutrient and O2 flux, with CO2 production rates returning to preperturbation levels within 24 h. The adaptable nature and the ability of bacteria to respond to environmental conditions were further demonstrated by the outer shear-susceptible region of the biofilm; the average CO2 production rate of cells from this region increased within 0.25 h from 9.45 ± 5.40 fmol of CO2·cell−1·h−1 to 22.6 ± 7.58 fmol of CO2·cell−1·h−1 when cells were removed from the biofilm and maintained in suspension without an additional nutrient supply. These results also demonstrate the need for sufficient monitoring of biofilm recovery at the solid substratum if mechanical methods are used for biofouling control.


2013 ◽  
Vol 67 (1) ◽  
Author(s):  
Martin Danko ◽  
Matej Mičušík ◽  
Mária Omastová ◽  
Juraj Bujdák ◽  
Dušan Chorvát

AbstractNew fluorescence dyes with an alkoxysilane moiety were synthesised by the condensation of 3-(triethoxysilyl)-1-propanamine (3-aminopropyltriethoxysilane) with 4,10-benzothioxanthene-3,1′-dicarboxylic acid anhydride (BTXA) and N,N-dimethylaminonaphthalene-1,8-dicarboxylic acid anhydride (DMANA), which was accompanied by the formation of an imidic bridge. The compounds N-(3-(triethoxysilyl)propyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTX-S) and 4-(N′, N′-dimethyl)-N-(triethoxysilyl)propyl-1,8-naphthalene dicarboxylic acid imide (DMAN-S) were characterised by steady-state and time-resolved fluorescence spectroscopy in chloroform and ethanol. Both conjugates (BTX-S and DMAN-S) exhibited absorption and emission bands in the same region as the un-substituted BTXA and DMANA. An important Stokes shift was observed for DMAN-S in ethanol. A high fluorescence quantum yield was observed for BTX-S in both solvents and for DMAN-S in chloroform. In addition, the newly developed fluorescent silane dyes were covalently attached to the microscopic particles of layered silicates and on the surface of SiO2 wafers as a proof of concept for fluorescence particle (surface) visualisation. The surface wafer modification was precisely characterised by X-ray photoelectron spectroscopy (XPS). Successful covalent linkage onto the particles of layered silicates was proved by confocal laser scanning microscopy technique.


2020 ◽  
Author(s):  
S Ghods ◽  
Ian Sims ◽  
MF Moradali ◽  
BHA Rehma

© 2015, American Society for Microbiology. Pseudomonas syringae pv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused by P. syringae pv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain of P. syringae pv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed by P. syringae pv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced by P. syringae pv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence that P. syringae pv. actinidiae NZ V-13 produces two polysaccharides, a branched α-D-rhamnan with side chains of terminal α-D-Fucf and an α-D-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% of P. syringae pv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment of P. syringae pv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic against P. syringae pv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition of P. syringae pv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds.


Sign in / Sign up

Export Citation Format

Share Document