Effect of Heat Treatment on the Phase Transformation from SnS to Pure SnS2

2013 ◽  
Vol 829 ◽  
pp. 141-146
Author(s):  
Rahim Lotfi Orimi ◽  
Seyed Javad Mirdeylami

SnS2nanoparticles were prepared by heat treatment of SnS nanoparticles at 300 °C under N2atmosphere for 1hour. SnS nanoparticles have been synthesized by chemical precipitation method. As synthesized SnS nanoparticles, for determining the optimal temperature, were heated at various temperatures; 100, 150, 200, 250 and 300 °C N2atmosphere for 1hour. The products are characterized by X-ray diffraction (XRD) , ultraviolet visible (UV-vis) absorbance spectra and photoluminescence (PL). XRD and optical absorption studies show an increase in particle size with increasing heat treatment temperature from 100 to 200 °C . However, a large decrease in the nanoparticle size along with transforming from SnS to SnS2 is observed at 300 °C.In addition, the optical properties of al samples , including both UV-vis absorption and emission spectra showed a blue shift as the particles size decreased.

2018 ◽  
Vol 9 ◽  
pp. 87 ◽  
Author(s):  
Decky J Indrani ◽  
Bambang Soegijono ◽  
Wisnu A Adi ◽  
Neil Trout

Objective: This study investigated effects of heat treatment on the crystallinity and phase composition of hydroxyapatites (HAs) of different heat treatment.Methods: HA powder was synthesized by the chemical precipitation method based on the reaction between the phosphorous acid and calcium hydroxide. Synthesized HA was divided into three groups for which each group was then given heat treatment at 100°C, 900°C, or 1300ºC. Phase identification, analyses and the crystallinity of the synthesized HAs were determined using the X-ray diffraction coupled with the Rietveld refinement.Results: The synthesized HAs with each heat treatment were identified as HA phase containing hexagonal structure. Those treated at 100°C or 900°C revealed with crystallinity of 48% and 68%, respectively, with no additional phase; whereas, those treated at 1300°C produced a crystallinity of 72% and contained dicalcium and tricalcium phosphates.Conclusion: The synthesized HAs treated at 100°C, 900°C, or 1300°C were HA phase with hexagonal structure. The variable crystallinity of the synthesized HAs yielded from different heat treatment temperature correspondingly determines different phase composition.


MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 563-567 ◽  
Author(s):  
Quentin Altemose ◽  
Katrina Raichle ◽  
Brittani Schnable ◽  
Casey Schwarz ◽  
Myungkoo Kang ◽  
...  

ABSTRACTTransparent optical ZnO–Bi2O3–B2O3 (ZBB) glass-ceramics were created by the melt quenching technique. In this work, a melt of the glass containing stoichiometric ratios of Zn/Bi/B and As was studied. Differential scanning calorimeter (DSC) measurements was used to measure the thermal behavior. VIS/NIR transmission measurements were used to determine the transmission window. X-ray diffraction (XRD) was used to determine crystal phase. In this study, we explore new techniques and report a detailed study of in-situ XRD of the ZBB composition in order to correlate nucleation temperature, heat treatment temperature, and heat treatment duration with induced crystal phase.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Kexin Fang ◽  
Lei Shi ◽  
Lishuang Cui ◽  
Chunwei Shi ◽  
Weiwei Si

A series of CoFe2O4/Bi12O17Cl2 (CFO/Bi12O17Cl2) nanocomposites have been prepared by chemical precipitation method. The result of X-ray diffraction showed that CFO/Bi12O17Cl2 composites had high crystallinity. It was found that CoFe2O4...


2011 ◽  
Vol 306-307 ◽  
pp. 410-415
Author(s):  
Li Sun ◽  
Fu Tian Liu ◽  
Qi Hui Jiang ◽  
Xiu Xiu Chen ◽  
Ping Yang

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.


2021 ◽  
Vol 234 ◽  
pp. 00106
Author(s):  
Houda Labjar ◽  
Hassan Chaair

The synthesis of apatite silicated Ca10(PO4)6-x(SiO4)x(OH)2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by heat treatment using calcium carbonate CaCO3 and phosphoric acid H3PO4 and silicon tetraacetate SiC8H20O4 (TEOS) in medium of water ethanol, with three different silicate concentrations. After drying, the samples are ground and then characterized by different analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron Microscopy (SEM) and chemical analysis.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Francesco Baldassarre ◽  
Angela Altomare ◽  
Nicola Corriero ◽  
Ernesto Mesto ◽  
Maria Lacalamita ◽  
...  

Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.


2012 ◽  
Vol 184-185 ◽  
pp. 1175-1180
Author(s):  
Guo Liang Li ◽  
Xiao Hua Jie ◽  
Bi Xue Yang

Amorphous Cr–C alloy coating was prepared by electrodepositing. The microhardness of the coating was tested after annealing from 100°C to 800°C and the crystallization evolution was studied by the analysis of X-ray diffraction (XRD) and differential scanning caborimetry (DSC). The results showed that the crystallization evolution of the coating began at 300°C and finished around 450°C, and intermetallic compound Cr7C3and Cr23C6appeared when heat treatment temperature reached around 600°C. The microhardness, corrosion resistance as well as the adhesion of the coating all increased first with the temperature and then dropped until it attained the proper values. The microhardness reached the maximum of 1610HV0.025at 600°C. While the corrosion resistance and the adhesion force attained the peak value at about 400°C.


2017 ◽  
Vol 46 (5) ◽  
pp. 356-361 ◽  
Author(s):  
Liliya Frolova ◽  
Alexander Pivovarov ◽  
Tatyana Butyrina

Purpose The purpose of this work is to study the patterns of pigment colour formation and to develop metal compositions for obtaining spinels using the precipitation and heat treatment methods. Design/methodology/approach Precursor materials were prepared using co-precipitation method. Phase composition of pigments were determined by X-ray diffraction. Colour of pigments was determined spectrophotometry. Modelling of colour formation was performed using simplex method. Planning in the future to carry out full synthesis of pigments of blue, red and yellow colours. Findings The paper deals with the results of theoretical and experimental research on the synthesis pigments of blue, red and yellow colours based on Fe-Co-Al-O spinel. The influence of the chromophore cation content and the heat treatment temperature on optical and colour characteristics of pigments were studied. Originality/value The resulting composition-property diagrams make it possible to evaluate the effect of chromophore cations and heat treatment on the colour formation for Fe2O3-Al2O3-CoO system. Crystal-phase composition of the pigments is installed and its relationship with the optical colour characteristics. That makes it possible carry out targeted synthesis of pigments blue, red and yellow colours in further. The phase composition of pigments and its relationship with optical and colour properties has been established thus enabling the directed synthesis of blue, red and yellow pigments.


2000 ◽  
Vol 663 ◽  
Author(s):  
P. Loiseau ◽  
D. Caurant ◽  
N. Baffier ◽  
C. Fillet

ABSTRACTThe investigations on enhanced reprocessing of nuclear spent fuel, and notably on separating the long-lived minor actinides, such as Am and Cm, from the other fission products have led to the development of highly durable specific matrices such as glass-ceramics for their immobilization. This study deals with the characterization of zirconolite (CaZrTi2O7) based glass-ceramics synthesized by devitrification of an aluminosilicate parent glass. Trivalent actinide ions were simulated by neodymium, which is a paramagnetic local probe. Glass-ceramics with Nd2O3 contents ranging from 0 to 10 weight % were prepared by heat treatment of a parent glass at two different growth temperatures: 1050° and 1200°C. X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and electron spin resonance (ESR) measurements clearly indicate that Nd3+ ions are partly incorporated in zirconolite crystals formed in the bulk of the glass-ceramic samples. The amount of neodymium in the crystalline phase was estimated using ESR results and was found to decrease with increasing either heat treatment temperature or total Nd2O3 content.


2013 ◽  
Vol 634-638 ◽  
pp. 696-700
Author(s):  
Lin Jiu Xiao ◽  
Peng Li ◽  
Yong Gang Sheng

A series of Ti(SO4)2/γ-Al2O3 catalysts were prepared by impregnation method and the catalytic performance of these catalysts in 1-butene oligomerization was investigated. The heat treatment temperature played great influences on the catalytic performance of these catalysts in the oligomerization. 90.1 wt.% conversion of 1-butene and 92.2 wt.% selectivity of dimers were obtained on Ti(SO4)2/γ-Al2O3(450) catalyst at 80 °C, 1.0 Mpa and LHSV=0.6 h−1. The heat treatment temperature determined the crystallinity of TiOSO4 and specific surface area of these catalysts, which affected the catalytic performance of these catalysts in 1-butene oligomerization. In addition, the physicochemical properties of these catalysts were comparatively characterized by powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption techniques.


Sign in / Sign up

Export Citation Format

Share Document