LED Heat Dissipation Analysis Using Composite Based Cylindrical Slug

2014 ◽  
Vol 893 ◽  
pp. 803-806 ◽  
Author(s):  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Vithyacharan Retnasamy

The optical efficacy and reliability of light emitting diode is extensively influenced by the operating junction temperature of the LED. Therefore, the evaluation of junction temperature is significant. This paper reports a simulation analysis on the heat dissipation of single chip LED package with based material, copper diamond (Cu/Dia) cylindrical heat slug.Ansys version 11 was utilized as the simulation platform. The junction temperature and stress of the LED chip under natural convection condition were evaluated with varied input power of 0.1 W, 0.5 W and 1 W. Results indicated the maximum junction temperature of LED chip was attained at input power of 1 W.

2011 ◽  
Vol 687 ◽  
pp. 215-221
Author(s):  
Yuan Yuan Han ◽  
Hong Guo ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ke Chu ◽  
...  

With increasing of the input power of the chips in light emitting diode (LED), the thermal accumulation of LEDs package increases. Therefore solving the heat issue has become a precondition of high power LED application. In this paper, finite element method was used to analyze the thermal field of high power LEDs. The effect of the heatsink structure on the junction temperature was also investigated. The results show that the temperature of the chip is 95.8°C which is the highest, and it meets the requirement. The conductivity of each component affects the thermal resistance. Convective heat exchange is connected with the heat dissipation area. In the original structure of LEDs package the heat convected through the substrate is the highest, accounting for 92.58%. Three heatsinks with fin structure are designed to decrease the junction temperature of the LEDs package.


2013 ◽  
Vol 404 ◽  
pp. 460-464
Author(s):  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Fairul Afzal Ahmad Fuad ◽  
Phaklen Ehkan ◽  
Rajendaran Vairavan ◽  
...  

Conventional incandescent lamps are being replaced by high power light emitting diode as a lighting source due to it ascendancy in terms of physical size, performance, output and lifetime. Nevertheless, the reliability and efficiency of the LED is dependent on the junction temperature. This study presents the thermal simulation of single chip LED package with 5mm x5mmx 1mm aluminum heat slug. The junction temperature and stress of LED chip were evaluated using Ansys version 11. Input power of 0.1 W and 1 W were applied to the LED. The simulation results showed that at input power of 1W, the maximum junction temperature and stress of the LED chip is 112.91°C and 263.82Mpa respectively.


2014 ◽  
Vol 487 ◽  
pp. 536-539 ◽  
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Nazuhusna Khalid ◽  
K. Anwar ◽  
...  

This paper presents the characterization of a single chip high power LED package through simulation. Ansys version 11 was used for the simulation. The characterization of the LED package with aluminum cylindrical heat slug was carried out under natural convection condition at ambient temperature of 25°C. The junction temperature and the stress of the LED chip was assesed. The LED chip was powered with input power of 0.1 W and 1 W and the heat dissipation was assesed. Results showed that that the junction temperature and the Von Mises Stress of the single chip LED package increases with the increased input power.


2014 ◽  
Vol 893 ◽  
pp. 811-814
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy

The vast development of the LED industry has created contemporary set of thermal issues with limits the reliability of the high power LEDs. Thus, this paper reports a simulation analysis done on single chip high power LED package to evalute the effects of heat slug material on the heat dissipation of the LED package. The heat dissipation of two types of heat slug material, aluminum (Al) and copper (Cu) were compared in terms of junction temperature, von Mises stress and thermal resistance of the LED chip at varied input power of 0.1 W and 1W. Results of the analysis showed that the copper heat slug exhibits a better heat dissipation due to its superior thermal conductivity.


2014 ◽  
Vol 1082 ◽  
pp. 336-339
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Hussin Kamarudin ◽  
Mukhzeer Mohamad Shahimin ◽  
...  

High power light emitting diodes (LEDs) characteristics in terms of efficiency, long operating life and reliability which has lead to its application as lighting systems. However, the high power LEDs are subjected to thermal challenges due to it high input power. This work reports simulation analysis on a single chip high power LED to where thermal performances of the LED package were evaluated under varied convection condition. The simulation was carried out using Ansys version 11. The heat dissipation evaluated and compared in terms of junction temperature, von Mises stress and thermal resistance at each respective convection condition with constant input power of 1 W.


2014 ◽  
Vol 487 ◽  
pp. 145-148 ◽  
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy

High power light emitting diodes is the new era of lighting due to momentous supremacy in terms of lighting efficacy over traditional lighting systems. The reliability of LED is dependent on its junction temperature. This study confers on the thermal and stress characterization of LED chip with copper cylindrical heat slug through simulation method. The simulation characterization was carried out with Ansys version 11 at ambient temperature of 25°C under natural convection condition. The LED package was powered with input powers of 0.1 W, 0.5 W and 1W .Results indicated that input power influences the junction temperature and stress of LED chip.


2014 ◽  
Vol 1082 ◽  
pp. 332-335
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
Gan Meng Kuan

In this paper, the heat distribution for single chip high power LED package attached with varied heat sink fin shapes were analyzed through simulation. The main focus of this study was to scrutinize the fluctuation of junction temperature with different shapes of heat sink fin designs. The simulation was done using Ansys version 11. The single chip LED was loaded with input power of 0.5 W and 1 W . Simulation was done at ambient temperature of 25°C under three convection coefficient of 5, 10 and 15 W/m2.oC respectively. The obtained results showed that the LED package with pyramid pin fin heat sink has demonstrated a better thermal performance compared to the LED package with cylindrical pin fin heat sink.


2011 ◽  
Vol 216 ◽  
pp. 106-110 ◽  
Author(s):  
Hong Qin ◽  
Da Liang Zhong ◽  
Chang Hong Wang

Thermal management is an important issue for light emitting diodes’ utilization. For high power light emitting diode (LED), active heat dissipation method plays a vital role. As a new cooling device, thermoelectric cooler (TEC) is applied in LED packaging for the precisely temperature controlled advantage. In order to evaluate the thermal performance of the TEC packaging designs in LED, experimental measurement is used to assess the chip’s junction temperature of three different cooling models, which include the heatsink model, the heatsink and fan model and the TEC, heatsink and fan model. Based on the research, it is better to apply TEC cooling methods with the power dissipation of LED less than 35 W and the wind speed is 3.6 m/s. However, the power dissipation of TEC itself plays a vital role of the total power dissipation of LED packaging. The results of economic analysis shows that the LED integrated with TEC package achieves 22.34% and 44.73% electric energy saving under the condition of 20 W and 30 W power dissipation of the LED chip contrasts to the fluorescent lamp, but sacrifices 2.71% electric power under the condition of 10 W power dissipation of the LED chip.


2010 ◽  
Vol 139-141 ◽  
pp. 1433-1437
Author(s):  
Kai Lin Pan ◽  
Jiao Pin Wang ◽  
Jing Liu ◽  
Guo Tao Ren

Heat dissipation and cost are the key issues for light-emitting diode (LED) packaging. In this paper, based on the thermal resistance network model of LED packaging, three-dimensional heat dissipation model of high power multi-chip LED packaging is developed and analyzed with the application of finite element method. Temperature distributions of the current multi-chip LED packaging model are investigated systematically under the different materials of the chip substrate, die attach, and/or different structures of the heat sink and fin. The results show that the junction temperature can be decreased effectively by increasing the height of the heat sink, the width of the fin, and the thermal conductivity of the chip substrate and die attach materials. The lower cost and higher reliability for LED source can be obtained through reasonable selection of materials and structure parameters of the LED lighting system.


2021 ◽  
Vol 11 (19) ◽  
pp. 8844
Author(s):  
He Jiang ◽  
Jiming Sa ◽  
Cong Fan ◽  
Yiwen Zhou ◽  
Hanwen Gu ◽  
...  

The effect of correlated color temperature (CCT) on the thermal performance of light emitting diode (LED) filament in flip-chip packaging was investigated in detail. Two filaments with different lengths were selected as the research object, and the thermal resistance of filaments under three CCT (2200 K, 2400 K, 2700 K) were studied. The optical properties and thermal parameters of the two groups of filaments were measured, and the results were analyzed combined with the color coordinate. The experimental results show that thermal properties of LED filaments is closely related to CCT. Under constant current condition, junction temperature decreases with the increase of color difference. With the change of phosphor glue and phosphorus powder ratio, the color temperature of LED filament also changes. In the filaments with the same chip structure and packaging mechanism, the higher the proportion of red phosphorescent powder, the worse the heat dissipation performance of the filament. These results show that in the design and manufacture of LED filament, it is helpful to control the CCT of LED filament under the premise of meeting the use requirements.


Sign in / Sign up

Export Citation Format

Share Document