Synthesis of NiO Electrochromic Films via Two-Step Method

2014 ◽  
Vol 894 ◽  
pp. 381-385 ◽  
Author(s):  
Siti Zairyn Fakurol Rodzi ◽  
Yusairie Mohd

Nickel oxide thin films were electrodeposited onto ITO glass substrates by a two-step method: i) electrodeposition of nickel and ii) further thermal oxidation at 300 °C. The surface morphology of the NiO thin films was characterized by atomic force microscopy (AFM) and the transmittance in the coloured and bleached states were analysed using UV-Visible (UV-Vis) spectroscopy. The electrochemical properties of NiO films were measured in 1 M KOH electrolyte by cyclic voltammetry (CV). A good optical quality and highly improved electrochromic performances NiO film was successfully synthesized.

2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2011 ◽  
Vol 492 ◽  
pp. 202-205 ◽  
Author(s):  
Xi Wei Qi ◽  
Xiao Yan Zhang ◽  
Xuan Wang ◽  
Hai Bin Sun ◽  
Jian Quan Qi

BiFeO3 thin films were spin-coated on conductive indium tin oxide (ITO)/glass substrates by a simple sol-gel possess annealed at 470-590°C. The crystal structure of as-prepared BiFeO3 thin films annealed at different temperature was determined to be rhombohedral of R3m space and free of secondary phases was also confirmed. Cross section scanning electron microscope (SEM) pictures revealed that the thickness of BiFeO3 thin film was about 320 nm. The double remanent polarization 2Pr of BiFeO3 thin film annealed at 500°C is 2.5 μC/cm2 without applied field at room temperature. Image of atomic force microscopy indicated that the root-mean-square surface roughness value of BiFeO3 thin film was 6.13 nm.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Rodica Ionescu ◽  
Raphael Selon ◽  
Nicolas Pocholle ◽  
Lan Zhou ◽  
Anna Rumyantseva ◽  
...  

Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Ousama Ifguis

Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.


2019 ◽  
Vol 286 ◽  
pp. 49-63
Author(s):  
Dwight Acosta ◽  
Francisco Hernández ◽  
Alejandra López-Suárez ◽  
Carlos Magaña

WO3:Mo and WO3:Ti thin films have been deposited on FTO/Glass substrates by the pulsed chemical spray technique at a substrate temperature of Ts= 450°C. The influence of Mo and Ti doping on the structural, electrical, and optical behavior of WO3thin films, has been studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Ultra Violet and Visible Spectrometry (UV-VIS), and Surface Conductivity Methods (Four Points). Doped WO3films presents similar polycrystalline structures but with noticeable modifications in surface configurations at micrometric and nanometric levels, as the Mo and Ti concentration is systematically increased in the starting sprayed solution. From processed High-Resolution Electron Micrographs (HREM), a low density of structural defects was found on pure and doped WO3grains. This lead to conclude that variations in films surface characteristics are mainly related with metallic doping concentrations which in turn, have noticeable influence in electrical and optical behaviors reported in this work.


2020 ◽  
Vol 2 ◽  
Author(s):  
Indra Sulania ◽  
R. Blessy Pricilla ◽  
G. B. V. S. Lakshmi

Nanocomposite materials are multi-phase materials, usually solids, which have two or more component materials having different chemical and physical properties. When blended together, a newer material is formed with distinctive properties which make them an eligible candidate for many important applications. In the present study, thin films of nafion (polymer) and hematite or α-Fe2O3 (nanoparticles) nanocomposite is fabricated on indium tin oxide (ITO) coated glass substrates, due to its enhanced ionic conductivity, for cholesterol biosensor applications. Scanning electron microscopy and Atomic force microscopy revealed the formation of nanorod structured α-Fe2O3 in the films. The cyclic voltammetry (CV) studies of nafion-α-Fe2O3/ITO revealed the redox properties of the nanocomposites. The sensing studies were performed on nafion-α-Fe2O3/CHOx/ITO bioelectrode using differential pulse voltammetry (DPV) at various concentrations of cholesterol. The enzyme immobilization leaded to the selective detection of cholesterol with a sensitivity of 64.93 × 10−2 μA (mg/dl)−1 cm−2. The enzyme substrate interaction (Michaelis–Menten) constant Km, was obtained to be 19 mg/dl.


2020 ◽  
Vol 398 ◽  
pp. 140-146
Author(s):  
Kawther A. Khalaph ◽  
Zainab J. Shanan ◽  
Aqel Mashot Jafar ◽  
Falah Mustafa Al-Attar

Recently, lead iodide is the most materials employment in the perovskite solar cell application. This paper has studied the character of preparation, structural and optical properties of pbI2 materials. Structural properties are included investigation of the measurements X-Ray Diffraction (XRD), Scan Electron Microscopy (SEM), Fourier Transform InfraRed spectroscopy (FTIR) and Atomic Force Microscopy (AFM) tests to the PbI2 thin films samples. Optical properties are included the investigation UV-Vis test of the thin film samples deposited on glass substrates and investigated the Absorption, Transmittance and evaluated energy gap (Eg = 2.3 eV).


2008 ◽  
Vol 17 (04) ◽  
pp. 451-463 ◽  
Author(s):  
XIN WANG ◽  
JIASHENG RU ◽  
SHIZUYASU OCHIAI ◽  
YUU YAMADA ◽  
YOSHIYUKI UCHIDA ◽  
...  

Regioregular poly(3-hexylthiophene) [RR-P3HT] thin films were prepared on fused quartz glasses by spin-coating and drop-casting from the chloroform solutions. Film structures and morphologies were characterized by UV-visible absorption spectra, out-of-plane X-ray diffraction (XRD) and atomic force microscopy (AFM). Drop-cast films showed increased χ(3) of about three times higher than that of the spin-coated ones when the film thicknesses were both around 140 nm, and the magnitude of the increase was different for different thickness. The magnitudes of χ(3) for drop-cast RR-P3HT films were calculated in the range of 10-11 esu, and the phases of χ(3) lay in the range from 230 to 300° which were consistent with the contributions from two-photon absorptions (TPA). Hexamethyldisilazane (HMDS) treatment of the glass substrates could increase the χ(3) of drop-cast films further from about ten percent to several times higher. This also depended on the film thickness. These results revealed the deposition method and surface modification effects on the self-assembled RR-P3HT film structures, and the importance of higher-ordering and increased crystallinity for the enhancement of the χ(3) of the polymeric films for their applications in NLO devices.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 977-984 ◽  
Author(s):  
Enno Lorenz ◽  
Christopher Keil ◽  
Derck Schlettwein

Thin films from the monolayer range to the thickness of 40 nm of the perfluorinated copper phthalocyanine (F16PcCu) were prepared by physical vapor deposition on freshly cleaved (001) faces of the alkali halides NaCl , KCl and KBr . The different lattice constants of the substrates provided sufficient difference to trigger the growth of differently ordered phases of F16PcCu . Electron diffraction, Atomic Force Microscopy and UV-vis spectroscopy were used to characterize the structure for F16PcCu monolayers and for films of increasing average film thickness towards bulk films. A square lattice of flat-lying F16PcCu is proposed for the first monolayers. In the bulk films, phases already described for F16PcCu on other substrates were formed, but also a new phase was discovered.


Sign in / Sign up

Export Citation Format

Share Document