Selective Detection of Dopamine in the Presence of Uric Acid Using Polymerized Phthalo Blue Film Modified Carbon Paste Electrode

2014 ◽  
Vol 895 ◽  
pp. 447-451 ◽  
Author(s):  
Jamballi G. Manjunathaa ◽  
Mohamad Deraman ◽  
Nur Hamizah Basri ◽  
I.A. Talib

A convenient and useful method for the voltammetric determination of dopamine (DA) and uric acid (UA) based on poly (Phthalo blue) modified carbon paste electrode (PTBMCPE) is reported in this paper. The PTBMCPE exhibits excellent electro-catalytic activities for the oxidationreduction of DA and UA, as well as eliminating the interference. Factors influencing the detection processes are optimized and the kinetic parameters are calculated. The effects of pH, scan rate and concentration of dopamine on the peak current were investigated, and the results indicated that the peak current of dopamine is the highest in 0.2 M pH 7.0 Phosphate buffer solution (PBS) and the electrode reaction corresponds to a rate-controlled process. The proposed method possesses the distinct advantages of simple, appropriate for operation, good reproducibility and highly selective and sensitive.

Surfaces ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 191-204
Author(s):  
Edwin S. D’Souza ◽  
Jamballi G. Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari ◽  
Huligerepura J. Arpitha ◽  
...  

A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.


2018 ◽  
Vol 10 (11) ◽  
pp. 1362-1371 ◽  
Author(s):  
Mallappa Mahanthappa ◽  
Nagaraju Kottam ◽  
Shivaraj Yellappa

The simultaneous electroanalysis of acetaminophen (AC), guanine (G) and adenine (A) was successfully achieved on the zinc sulphide nanoparticles-modified carbon paste electrode (ZnS NPs/CPE) in phosphate buffer solution (PBS).


2019 ◽  
Vol 14 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Girish Tigari ◽  
J.G. Manjunatha ◽  
D.K. Ravishankar ◽  
G. Siddaraju

An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. B. Teradale ◽  
S. D. Lamani ◽  
B. E. Kumara Swamy ◽  
P. S. Ganesh ◽  
S. N. Das

A polymeric thin film modified electrode, that is, poly(niacinamide) modified carbon paste electrode (MCPE), was developed for the electrochemical determination of catechol (CC) by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE), the poly(niacinamide) MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS) of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide) modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M) and limit of quantification (10S/M) were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Masoud Negahdary ◽  
Saeed Rezaei-Zarchi ◽  
Neda Rousta ◽  
Soheila Samei Pour

The direct electrochemistry of cytochrome c (cyt c) immobilized on a modified carbon paste electrode (CPE) was described. The electrode was modified with ZnO nanoparticles. Direct electrochemistry of cytochrome c in this paste electrode was easily achieved, and a pair of well-defined quasireversible redox peaks of a heme Fe (III)/Fe(II) couple appeared with a formal potential (E0) of −0.303 V (versus SCE) in pH 7.0 phosphate buffer solution (PBS). The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2. The preparation process of the proposed biosensor was convenient, and the resulting biosensor showed high sensitivity, low detection limit, and good stability.


2018 ◽  
Vol 5 (12) ◽  
pp. 181264 ◽  
Author(s):  
Q. Zhou ◽  
H. Y. Zhai ◽  
Y. F. Pan

A chemically modified carbon paste electrode (CPE) was designed by mixing graphite and multi-walled carbon nanotubes (MWCNT). The electrochemical behaviour was studied, and the determination method of phenylephrine hydrochloride (PHE) on this sensor was established. According to the results, the optimal ratio of MWCNTs was approximately 12.5% (w/w). MWCNT-modified carbon paste electrodes (MWCNT-CPEs) showed high electrochemical activity for PHE, producing a sharp oxidation peak current ( I p ) at approximately +0.816 V versus a saturated calomel electrode (SCE) reference electrode in phosphate buffer solution (PBS, pH 6.45), and the I p increased by approximately two times compared to that of the bare CPE. The anodic I p was linearly related with 5.0 × 10 −6 –7.5 × 10 −4 mol l −1 PHE, with a detection limit of 3.7 × 10 −7 mol l −1 . Furthermore, MWCNT-CPEs were successfully applied to the determination of PHE in injection, eye drop and nasal spray liquid samples as a simple, rapid and low-cost method.


RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 52058-52066 ◽  
Author(s):  
Seyed Naser Azizi ◽  
Shahram Ghasemi ◽  
Mehrnaz Mikhchian

A new amperometric sensor is prepared based on a Ag doped NaA nanozeolite modified carbon paste electrode (Ag/ACPE) in order to detect hydrogen peroxide (H2O2) in phosphate buffer solution (PBS, pH 7.0).


Sign in / Sign up

Export Citation Format

Share Document