Research on the Arc-Teeth Synchronous Belt's Tooth Load Distribution Caused by the Machining Error

2014 ◽  
Vol 915-916 ◽  
pp. 248-251
Author(s):  
Yao Chen Shi ◽  
Zhan Guo Li ◽  
Hao Li

This paper aimed at the machining error of the arc-teeth synchronous belts tooth ,the 3D model was established with CATIA ,the finite element model of belt was established by HYPERMESH ,and using the multibody dynamic software RECURDYN, the models with different machining errors were simulated by rigid-flexible coupling technology. Systematically studied the changing rule of the wedged stress and the contact stress under the influence of the machining error. So it has certain value to enhance the loading capacity, transmission performance and useful life.

2013 ◽  
Vol 419 ◽  
pp. 122-126
Author(s):  
Li Zhang ◽  
Chen Kai ◽  
Xue Jiao Wang

The industrial sewing machine frame is one of the most important components of the sewing machine system, so studying its dynamic characteristics is particularly important. In this paper, based on the 3D model, the theory modal analysis of the industrial sewing machine is conducted with ABAQUS software and the modal experiment analysis is carried out through LMS(Lab Impact Testing system). The experimental results are in good consistency, which shows that the finite element model built in the paper is reasonable. This paper provides theoretical reference for vibration and noise reduction of the industrial sewing machine.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2013 ◽  
Vol 313-314 ◽  
pp. 742-745
Author(s):  
Li Zhang ◽  
Chen Kai ◽  
Ye Tian

The brake disc is one of the most important components of the braking system, so studying its dynamic characteristics is particularly important. In this paper, based on the 3D model, the theory modal analysis of break disc is conducted with ANSYS software and the modal experiment analysis is carried out through LMS(Lab Impact Testing system). The experimental results are in good consistency, which shows that the finite element model built in the paper is reasonable. This paper provides theoretical reference for vibration and noise reduction of the brake disc.


2013 ◽  
Vol 850-851 ◽  
pp. 208-211
Author(s):  
Yi Jie Zhang ◽  
Ling Qiong Kong ◽  
Huan Zou

Aiming at the problems of vibration and noise appeared in the work of lifting the skip underframe of the mine, a parameterized model of the underframe of skip is established by taking advantage of UG. And a finite element modal analysis is done by leading 3D model into the ANSYS, and the credibility of the finite element model is verified by combining the modal test. On the basis of comparing the characteristics of the external excitation frequency, the dynamic characteristics of the underframe of skip are evaluated and the structure is optimized. The results of the optimization indicate that: not only the modal frequency of the first eight orders of the ship underframe has avoided the range of external excitation frequency, with a smooth mode of vibration, avoiding the occurrence of sympathetic vibration effectively, but it has lost a weight of 10.6%, achieving an improvement of the hoisting capacity of the skip equipment. This research is of important reference to the technical transformation of skip equipment for some mine enterprise.


2012 ◽  
Vol 538-541 ◽  
pp. 616-620
Author(s):  
Jie Tian ◽  
Guang Bing Xiao ◽  
Wen Dong Wang

The 3D-model of lift transporter frame was assembled by the parts, whose 3D-models were established under UG. And the finite element model was achieved in ANSYS/ Workbench. Four different analysis conditions were developed and the static properties of the frame in various conditions were analyzed by ANSYS/Workbench. The analysis results indicate that the design of the special frame is feasible.


Author(s):  
Wenjie Zhang ◽  
Geng Liu ◽  
Shangjun Ma ◽  
Ruiting Tong

A model is proposed to calculate load distribution over threads of planetary roller screw mechanism (PRSM) with pitch deviation. Firstly, four kinds of machining errors of threads including pitch deviation, deviation of thread angle, division error of multiple threads and deviation of pitch diameter are analyzed, and the relationships among them are investigated. After analyzing the relationships among the errors, pitch deviation is chosen to be the main machining error to investigate because it can reflect the effects of other machining errors, and is the most influential machining error on the contact condition and deformation compatibility relationship, i.e. the load distribution of PRSM. Based on the proposed model, the effects of pitch deviation on the load distribution of PRSM are studied through numerical analyses, and load distributions under different machining precisions are analyzed. In order to experimentally verify the investigation, two PRSM samples are measured and tested under the same experimental conditions. The experimental results show that load distributions over threads will fluctuate because of the existence of pitch deviations. The pitch deviations, load distributions over threads and wear depths of threads in the samples show obvious accordance, which indirectly demonstrates the effects of pitch deviation on load distribution.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmad H. Bokhari ◽  
Martin Berggren ◽  
Daniel Noreland ◽  
Eddie Wadbro

AbstractA subwoofer generates the lowest frequency range in loudspeaker systems. Subwoofers are used in audio systems for live concerts, movie theatres, home theatres, gaming consoles, cars, etc. During the last decades, numerical simulations have emerged as a cost- and time-efficient complement to traditional experiments in the design process of different products. The aim of this study is to reduce the computational time of simulating the average response for a given subwoofer design. To this end, we propose a hybrid 2D–3D model that reduces the computational time significantly compared to a full 3D model. The hybrid model describes the interaction between different subwoofer components as interacting modules whose acoustic properties can partly be pre-computed. This allows us to efficiently compute the performance of different subwoofer design layouts. The results of the hybrid model are validated against both a lumped element model and a full 3D model over a frequency band of interest. The hybrid model is found to be both accurate and computationally efficient.


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


Sign in / Sign up

Export Citation Format

Share Document