Preparatory Electrodeposition Process for High Purity Bulk Aluminum

2014 ◽  
Vol 922 ◽  
pp. 237-241
Author(s):  
Yudai Hanaoka ◽  
Satoshi Ono ◽  
Isao Matsui ◽  
Yorinobu Takigawa ◽  
Tokuteru Uesugi ◽  
...  

Electrodeposition for Al from a dimethylsulfone (DMSO2) bath was consecutively performed, applying two types of current waveforms such as direct current and pulsed current, to investigate the effect of a current type on the preparatory electrodeposition (pre-electrodeposition) process. Electrodeposited Al from a DMSO2bath has a nanograined structure and high strength. However, the electrodeposits showed no plastic deformability due to the large amount of sulfur and chlorine which were incorporated into the electrodeposits as sulfide and chloride. Therefore, we obtained high purity Al from a DMSO2bath using pre-electrodeposition process, which could decrease sulfur and chlorine contents without using additives. The sulfur and chlorine contents of electrodeposits, obtained from a DMSO2bath applying both types current, both decreased to approximately 0.1 at.%. This result indicated that the waveforms made no difference in pre-electrodeposition process.

2021 ◽  
Vol 51 (1) ◽  
pp. 29-42
Author(s):  
Ewa Osuchowska ◽  
Zofia Buczko ◽  
Klaudia Olkowicz

Abstract The electrodeposition process of Zn-Cr alloy coatings under the conditions of direct and pulsed current is discussed. The Cr content in the obtained alloy coatings, the current efficiency of the process, surface morphology, structure and wettability as a function of deposition parameters, such as current density, were determined. The Zn-Cr alloy coatings of good quality contained up to 20 wt.% Cr (for direct current) and up to 9 wt.% Cr (for pulse current). All the obtained coatings had a structure typical of zinc coatings (h.c.p.) and had a hydrophobic character. The morphology of the coatings changed significantly under the influence of changes in deposition conditions.


Alloy Digest ◽  
1975 ◽  
Vol 24 (1) ◽  

Abstract FORMALOY is a high-strength, high-purity zinc-base alloy with excellent performance in dies for forming sheet metal. It has a fine, dense grain structure which contributes markedly to its good toughness, excellent machinability and ability to develop a high polish. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-17. Producer or source: Federated Metals Corporation, ASARCO Inc..


1956 ◽  
Vol 11 (1) ◽  
pp. 71-75
Author(s):  
E. Haeffner ◽  
Th. Sjöborg ◽  
S. Lindhe

The isotope separation effect of a direct electric current in a liquid metal is demonstrated by passing a current through mercury, which is enclosed in a capillary tube. The second part of the paper deals with an attempt of establishing an isotope effect when a direct current is passed through an uranium wire.


2009 ◽  
Vol 614 ◽  
pp. 189-196
Author(s):  
H.L. Chan ◽  
Jian Lu

Different Power types and parameters in the electrodeposition process result in different microstructures and hence mechanical properties. In this paper, direct current and double pulse power with different combinations of on and off time have been used for electrodeposition. The tensile properties of the electrodeposited (Ed) Cu with different parameters in process have been studied and also the microstructures of the Cu obtained have been examined by SEM. This paper aims at explaining the effects of one of the important parameters in electrodeposition: different power types on the tensile properties. The tensile properties of Ed Cu after Surface Mechanical Attrition Treatment (SMAT) are also shown in this paper.


Author(s):  
I.V. Frolov ◽  
◽  
V.A. Sergeev ◽  
A.M. Hodakov ◽  
S.A. Zaytsev ◽  
...  

The paper presents the results of studies of changes in the characteristics of LED COB matrices of the GW P9LR31.EM - DURIS S 8 type as part of a LED luminaire when tested under the direct current in a continuous mode and in an electrocycling mode. The arrays consist of eight InGaN/GaN LED dies connected in series, coated with a phosphor. Calculation in the Comsol Multiphtsics environment of the temperature field of the luminaire at the rated operating current and free convection heat transfer showed that the maximum overheating of the matrices does not exceed 46 K, and the difference in their temperatures is 2 K. At the same time, the experimental values of the thermal resistances of the matrices of a real lamp vary from 42 to 58 K/W. Before testing, the I-V characteristics of the matrices differ markedly in the level of leakage current in the voltage range from 14 V to 19 V, and the LEDs in the luminaire matrices have a significant spread in the brightness of emission in the microcurrent mode. The degree of this scatter within each matrix was estimated by measuring the luminescence brightness of each die of the matrix and calculating the coefficient of variation γ. It was found that the coefficient of variation of the emission brightness of the COB matrix dies measured at a current of 100 nA strongly correlates with the leakage current. When testing a luminaire under the direct current, the most significant changes in the electrophysical and optical characteristics of COB matrices are observed in the range of microcurrents: the distribution of the emission brightness of the matrix dies at a current of 100 nA becomes more uniform. The greatest changes in matrix characteristics were observed after the first 700 hours of testing, that is, at the running-in stage. At the same time, no correlation was found between the degree of change in the characteristics of the matrices during tests and their thermal resistances.


2018 ◽  
Vol 23 (2) ◽  
pp. 3-10
Author(s):  
Ewa Osuchowska ◽  
Zofia Buczko ◽  
Klaudia Olkowicz

In the present work, the electrodeposition process of Zn-Cr alloy coatings under the conditions of direct and pulse current was discussed. Changes in the Cr content in the obtained alloy coatings, current efficiency of the process, surface morphology, structure and microhardness as a function of chromium(III) concentration in the bath to deposition, current density (direct and pulse) and solution mixing were determined. Surface morphology, structure and hardness of the obtained coatings were investigated. The Zn-Cr alloy coatings of good quality contained up to 0.25 %Cr (for direct current) and up to 9% Cr (for pulse current). The tested Zn-Cr alloy coatings obtained under pulse current conditions showed higher microhardness than the Zn-Cr coatings obtained under direct current conditions and than zinc coatings.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Mee Rahn Kim ◽  
Dong Ki Lee ◽  
Du-Jeon Jang

Multisegmented one-dimensional nanostructures composed of gold, copper, and nickel have been fabricated by depositing metals electrochemically in the pores of anodic aluminum oxide (AAO) templates. The electrodeposition process has been carried out using a direct current in a two-electrode electrochemical cell, where a silver-evaporated AAO membrane and a platinum plate have served as a working electrode and a counter electrode, respectively. The striped multimetal rods with an average diameter of about 300 nm have tunable lengths ranging from a few hundred nanometers to a few micrometers. The lengths and the sequence of metal segments in a striped rod can be tailored readily by controlling the durations of electrodeposition and the order of electroplating solutions, respectively.


Sign in / Sign up

Export Citation Format

Share Document