Based on ETEO Pattern Abnormal Event Detection in Wireless Sensor Networks

2014 ◽  
Vol 926-930 ◽  
pp. 1886-1889
Author(s):  
Bo Tian ◽  
Dian Hong Wang ◽  
Fen Xiong Chen ◽  
Zheng Pu Zhang

This paper presents a new algorithm for the detection of abnormal events in Wireless Sensor Networks (WSN). Abnormal events are sets of data points that correspond to interesting patterns in the underlying phenomenon that the network monitors. This algorithm is inspired from time-series data mining techniques and transforms a stream of sensor readings into an Extension Temporal Edge Operator (ETEO) of time series pattern representation, and then extracts the three eigenvalue of each sub-pattern, that is, patterns length, patterns slope and patterns mean to map time series to feature space, and finally uses local outlier factor to detect abnormal pattern in this feature space. Experiments on synthetic and real data show that the definition of pattern outlier is reasonable and this algorithm is efficient to detect outliers in WSN.

Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


Over the recent years, the term deep learning has been considered as one of the primary choice for handling huge amount of data. Having deeper hidden layers, it surpasses classical methods for detection of outlier in wireless sensor network. The Convolutional Neural Network (CNN) is a biologically inspired computational model which is one of the most popular deep learning approaches. It comprises neurons that self-optimize through learning. EEG generally known as Electroencephalography is a tool used for investigation of brain function and EEG signal gives time-series data as output. In this paper, we propose a state-of-the-art technique designed by processing the time-series data generated by the sensor nodes stored in a large dataset into discrete one-second frames and these frames are projected onto a 2D map images. A convolutional neural network (CNN) is then trained to classify these frames. The result improves detection accuracy and encouraging.


2010 ◽  
Vol 2 (2) ◽  
pp. 64-87
Author(s):  
B. R. Matam ◽  
David Lowe

This paper addresses the security of a specific class of common watermarking methods based on Dither modulation-quantisation index modulation (DM-QIM) and focusing on watermark-only attacks (WOA). The vulnerabilities of and probable attacks on lattice structure based watermark embedding methods have been presented in the literature. DM-QIM is one of the best known lattice structure based watermarking techniques. In this paper, the authors discuss a watermark-only attack scenario (the attacker has access to a single watermarked content only). In the literature it is an assumption that DM-QIM methods are secure to WOA. However, the authors show that the DM-QIM based embedding method is vulnerable against a guided key guessing attack by exploiting subtle statistical regularities in the feature space embeddings for time series and images. Using a distribution-free algorithm, this paper presents an analysis of the attack and numerical results for multiple examples of image and time series data.


Author(s):  
Durairaj Ruby ◽  
Jayachandran Jeyachidra

Environmental fluctuations are continuous and provide opportunities for further exploration, including the study of overground, as well as underground and submarine, strata. Underwater wireless sensor networks (UWSNs) facilitate the study of ocean-based submarine and marine parameters details and data. Hardware plays a major role in monitoring marine parameters; however, protecting the hardware deployed in water can be difficult. To extend the lifespan of the hardware, the inputs, processing and output cycles may be reduced, thus minimising the consumption of energy and increasing the lifespan of the devices. In the present study, time series similarity check (TSSC) algorithm is applied to the real-time sensed data to identify repeated and duplicated occurrences of data for reduction, and thus improve energy consumption. Hierarchical classification of ANOVA approach (HCAA) applies ANOVA (analysis of variance) statistical analysis model to calculate error analysis for realtime sensed data. To avoid repeated occurrences, the scheduled time to read measurements may be extended, thereby reducing the energy consumption of the node. The shorter time interval of observations leads to a higher error rate with lesser accuracy. TSSC and HCAA data aggregation models help to minimise the error rate and improve accuracy.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 95 ◽  
Author(s):  
Johannes Stübinger ◽  
Katharina Adler

This paper develops the generalized causality algorithm and applies it to a multitude of data from the fields of economics and finance. Specifically, our parameter-free algorithm efficiently determines the optimal non-linear mapping and identifies varying lead–lag effects between two given time series. This procedure allows an elastic adjustment of the time axis to find similar but phase-shifted sequences—structural breaks in their relationship are also captured. A large-scale simulation study validates the outperformance in the vast majority of parameter constellations in terms of efficiency, robustness, and feasibility. Finally, the presented methodology is applied to real data from the areas of macroeconomics, finance, and metal. Highest similarity show the pairs of gross domestic product and consumer price index (macroeconomics), S&P 500 index and Deutscher Aktienindex (finance), as well as gold and silver (metal). In addition, the algorithm takes full use of its flexibility and identifies both various structural breaks and regime patterns over time, which are (partly) well documented in the literature.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772091323
Author(s):  
Hani Attar ◽  
Mohammad R Khosravi ◽  
Shmatkov Sergiy Igorovich ◽  
Kuchuk Nina Georgievan ◽  
Mohammad Alhihi

The best service mechanism in multimedia wireless sensor networks can be achieved based on the multimedia traffic flow by developing a proper simulation algorithm process model, to be a trustable indication for real implementations, which is proposed in this article, together with the algorithm model outcome analysis. The quality estimation of the proposed mechanism is investigated by simulating real data transmission and obtaining the integral criterion of the processed mechanism, to determine the queue formation and loading control. Accordingly, it was proved that the first-in first-out algorithm is not useful as a flow algorithm; however, it is regarded as suitable to be considered as the benchmark algorithm when compared with the other algorithms such as priority queue, custom queue, fair queuing, and weighted fair queuing algorithms. Finally, each algorithm’s advantages and disadvantages were verified and the best usage conditions according to certain parameters, such as packet loss probability, average time delay, and jitter, were declared.


Sensors ◽  
2007 ◽  
Vol 7 (9) ◽  
pp. 1766-1792 ◽  
Author(s):  
Xue Wang ◽  
Jun-Jie Ma ◽  
Sheng Wang ◽  
Dao-Wei Bi

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jingpei Dan ◽  
Weiren Shi ◽  
Fangyan Dong ◽  
Kaoru Hirota

A time series representation, piecewise trend approximation (PTA), is proposed to improve efficiency of time series data mining in high dimensional large databases. PTA represents time series in concise form while retaining main trends in original time series; the dimensionality of original data is therefore reduced, and the key features are maintained. Different from the representations that based on original data space, PTA transforms original data space into the feature space of ratio between any two consecutive data points in original time series, of which sign and magnitude indicate changing direction and degree of local trend, respectively. Based on the ratio-based feature space, segmentation is performed such that each two conjoint segments have different trends, and then the piecewise segments are approximated by the ratios between the first and last points within the segments. To validate the proposed PTA, it is compared with classical time series representations PAA and APCA on two classical datasets by applying the commonly used K-NN classification algorithm. For ControlChart dataset, PTA outperforms them by 3.55% and 2.33% higher classification accuracy and 8.94% and 7.07% higher for Mixed-BagShapes dataset, respectively. It is indicated that the proposed PTA is effective for high dimensional time series data mining.


2019 ◽  
Vol 10 (3) ◽  
pp. 915
Author(s):  
Ali Ebrahimi Ghahnavieh

Every player in the market has a greater need to know about the smallest change in the market. Therefore, the ability to see what is ahead is a valuable advantage. The purpose of this research is to make an attempt to understand the behavioral patterns and try to find a new hybrid forecasting approach based on ARIMA-ANN for estimating styrene price. The time series analysis and forecasting is an essential tool which could be widely useful for finding the significant characteristics for making future decisions. In this study ARIMA, ANN and Hybrid ARIMA-ANN models were applied to evaluate the previous behavior of a time series data, in order to make interpretations about its future behavior for styrene price. Experimental results with real data sets show that the combined model can be most suitable to improve forecasting accurateness rather than traditional time series forecasting methodologies. As a subset of the literature, the small number of studies have been done to realize the new forecasting methods for forecasting styrene price.


Sign in / Sign up

Export Citation Format

Share Document