Characterization of Aluminium Titanium Nitride Thin Films Deposited by Reactive Magnetron Co-Sputtering

2010 ◽  
Vol 93-94 ◽  
pp. 340-343 ◽  
Author(s):  
Adisorn Buranawong ◽  
Surasing Chaiyakhun ◽  
Pichet Limsuwan

Nanocrystalline aluminium titanium nitride (AlTi3N) thin films were deposited on Si (100) wafers and grids by reactive magnetron co-sputtering technique using titanium and aluminium targets. The films were sputtered in Ar and N2 mixture at a constant flow rate under different conditions of deposition time ranging from 15 to 60 minutes. The crystal structure was characterized by X-Ray diffraction (XRD) and microstructure was analyzed by transmission electron microscopy (TEM). The results indicated that the formation of polycrystalline AlTi3N with the orthorhombic structure and the development of crystal structure was observed by varied the deposition time. The microstructure of films was good according to the XRD results. On the other hand, after annealed the films at 500OC in the air for 1 hour, the crystal structure did not change that exposed the stable structure of AlTi3N films.

2013 ◽  
Vol 743-744 ◽  
pp. 910-914
Author(s):  
Ting Han ◽  
Geng Rong Chang ◽  
Yun Jin Sun ◽  
Fei Ma ◽  
Ke Wei Xu

Si/C multilayer thin films were prepared by magnetron sputtering and post-annealing in N2 atmosphere at 1100 for 1h. X-ray diffraction (XRD), Raman scattering and high-resolution transmission electron microscopy (HRTEM) were applied to study the microstructures of the thin films. For the case of Si/C modulation ratio smaller than 1,interlayer diffusion is evident, which promotes the formation of α-SiC during thermal annealing. If the modulation ratio is larger than 1, the Si sublayers are partially crystallized, and the thicker the Si sublayers are, the crystallinity increases. To be excited, brick-shaped nc-Si is directly observed by HRTEM. The brick-shaped nc-Si appears to be more regular near the Si (100) substrate but with twin defects. The results are instructive in the application of solar cells.


2007 ◽  
Vol 119 ◽  
pp. 71-74 ◽  
Author(s):  
Yan Li ◽  
Xiao Li Zhang ◽  
Young Hwan Kim ◽  
Young Soo Kang

Co nanoparticles were synthesized via a solventless thermal decomposition of Co2+-oleate2. The crystalline structure is strongly affected by the thermal treatment of the Co nanoparticles. Further, the annealing also results in the decomposition of surfactant around Co particles. The size of nanoparticles was confirmed by transmission electron microscopy (TEM). The crystal structure of nanoparticles was characterized by X-ray diffraction pattern (XRD). The magnetic properties were characterized by vibrating sample magnetometer (VSM).


2013 ◽  
Vol 802 ◽  
pp. 227-231
Author(s):  
Panida Pilasuta ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont ◽  
Tosawat Seetawan

Crystal structure of Zn0.96Al0.02Ga0.02O was analyzed by X-Ray diffraction (XRD) technique and the microstructure was observed by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD results showed single phase and hexagonal structure a = b = 3.24982 Å, and c = 5.20661 Å. The SEM and TEM results showed the grain size of material arrangement changed after sintering and TEM diffraction pattern confirmed hexagonal crystal structure of Zn0.96Al0.02Ga0.02O after sintering.


2013 ◽  
Vol 46 (6) ◽  
pp. 1749-1754 ◽  
Author(s):  
P. Wadley ◽  
A. Crespi ◽  
J. Gázquez ◽  
M.A. Roldán ◽  
P. García ◽  
...  

Determining atomic positions in thin films by X-ray diffraction is, at present, a task reserved for synchrotron facilities. Here an experimental method is presented which enables the determination of the structure factor amplitudes of thin films using laboratory-based equipment (Cu Kα radiation). This method was tested using an epitaxial 130 nm film of CuMnAs grown on top of a GaAs substrate, which unlike the orthorhombic bulk phase forms a crystal structure with tetragonal symmetry. From the set of structure factor moduli obtained by applying this method, the solution and refinement of the crystal structure of the film has been possible. The results are supported by consistent high-resolution scanning transmission electron microscopy and stoichiometry analyses.


2011 ◽  
Vol 194-196 ◽  
pp. 1357-1360
Author(s):  
Ke Jie Li ◽  
Quan an Li ◽  
Xiao Hui Zhang

The Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr alloy was prepared under flux protection. The morphology and crystal structure of β′ precipitate phases in aged alloy has been studied using transmission electron microscopy and X-ray diffraction. The orientation relationship between β′ precipitate and matrix could existed as [ 010]BαB// [ 00]Bβ′B, (01 0) BαB// (020)Bβ′B and (0001)BαB was coherent with (001)Bβ′B; [0001]BαB// [001]Bβ′B, (1 00)BαB// (240)Bβ′B and ( 010)BαB was coherent with (0A_,8EEA0)Bβ′B. The HREM images indicated that the β' precipitates have a long-period ordered structure at the same time.


1997 ◽  
Vol 12 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Ji Zhou ◽  
Qing-Xin Su ◽  
K. M. Moulding ◽  
D. J. Barber

Ba(Mg1/3Ta2/3)O3 thin films were prepared by a sol-gel process involving the reaction of barium isopropoxide, tantalum ethoxide, and magnesium acetate in 2-methoxyethanol and subsequently hydrolysis, spin-coating, and heat treatment. Transmission electron microscopy, x-ray diffraction, and Raman spectroscopy were used for the characterization of the thin films. It was shown that the thin films tend to crystallize with small grains sized below 100 nm. Crystalline phase with cubic (disordered) perovskite structure was formed in the samples annealed at a very low temperature (below 500 °C), and well-crystallized thin films were obtained at 700 °C. Although disordered perovskite is dominant in the thin films annealed below 1000 °C, a low volume fraction of 1 : 2 ordering domains was found in the samples and grows with an increase of annealing temperature.


2006 ◽  
Vol 46 ◽  
pp. 146-151
Author(s):  
Andriy Lotnyk ◽  
Stephan Senz ◽  
Dietrich Hesse

Single phase TiO2 thin films of anatase structure have been prepared by reactive electron beam evaporation. Epitaxial (012)- and (001)-oriented anatase films were successfully obtained on (110)- and (100)-oriented SrTiO3 substrates, respectively. X-ray diffraction and cross section transmission electron microscopy investigations revealed a good epitaxial quality of the anatase films grown on the SrTiO3 substrates.


2010 ◽  
Vol 305-306 ◽  
pp. 33-37 ◽  
Author(s):  
S. Lallouche ◽  
M.Y. Debili

This work deals with Al-Cu thin films, deposited onto glass substrates by RF (13.56MHz) magnetron sputtering, and annealed at 773K. The film thickness was approximately the same 3-4µm. They are characterized with respect to microstructure, grain size, microstrain, dislocation density and resistivity versus copper content. Al (Cu) deposits containing 1.8, 7.21, 86.17 and 92.5at%Cu have been investigated. The use of X-ray diffraction analysis and transmission electron microscopy lead to the characterization of different structural features of films deposited at room temperature (< 400K) and after annealing (773K). The resistivity of the films was measured using the four-point probe method. The microstrain profile obtained from XRD thanks to the Williamson-Hall method shows an increase with increasing copper content.


1995 ◽  
Vol 10 (10) ◽  
pp. 2401-2403 ◽  
Author(s):  
Q.X. Jia ◽  
S.G. Song ◽  
S.R. Foltyn ◽  
X.D. Wu

Highly conductive metal-oxide RuO2 thin films have been successfully grown on yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. Epitaxial growth of RuO2 thin films on YSZ and the atomically sharp interface between the RuO2 and the YSZ substrate are clearly evident from cross-sectional transmission electron microscopy. A diagonal-type epitaxy of RuO2 on YSZ is confirmed from x-ray diffraction measurements. The crystalline RuO2 thin films, deposited at temperatures in the range of 500 °C to 700 °C, have a room-temperature resistivity of 35 ± 2 μω-cm, and the residual resistance ratio (R300 k/R4.2 k) is around 5 for the crystalline RuO2 thin films.


2005 ◽  
Vol 872 ◽  
Author(s):  
Yuebing Zheng ◽  
Shijie Wang ◽  
Cheng Hon A. Huan

AbstractThe effect of dopants on the band structure and crystal structure of Ba0.5Sr0.5TiO3thin films on (100) LaAlO3 substrates has been investigated. The dopants include Ti, Mg and Al. The band-gap energies of the thin films were determined from the transmission spectra measured by UVVIS spectrophotometer and increased with the increase of dopant concentration regardless of the type of dopants. The crystal structure was studied by using transmission electron microscopy, atomic force microscopy, x-ray diffraction and micro-Raman spectroscopy. The relation between band structure and crystal structure was discussed.


Sign in / Sign up

Export Citation Format

Share Document