Resistance of Polymer Dispersion Additive Modified Concrete to Light Liquids Action

2014 ◽  
Vol 941-944 ◽  
pp. 730-733 ◽  
Author(s):  
Maciej Gruszczyński

Numerous concrete and reinforced concrete structures (industrial floors, petrol station or manoeuvring park pavements, elements of sewage system) are subjected to danger of permanent or periodical action of petroleum liquids that often causes the considerable reduction in concrete strength as well as decrease of bond between concrete and steel, which usually results in structure damages. The subject of the paper is estimation of influence of polymer dispersion additive (styrene-acrylic co-polymer and styrene-butadiene latex) onto durability of concrete subjected to action of different types of light liquids. The influence of polymer dispersion additive was confronted with the action of silica fume usually applied for sealing the structure of concrete. In the paper there are presented tests results for different types of light liquids onto such cement-polymer concrete properties as: strength, penetration depth of light liquids into material structure.

2018 ◽  
Vol 55 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Marinela Barbuta ◽  
Alexandru Timu ◽  
Liliana Bejan ◽  
Roxana Dana Bucur

The experimental results obtained by studying the influence of different types of fibers on the mechanical properties of fly ash polymer concrete are presented in the paper. The general demand of using wastes found applicability in building material industry because some of them are beneficial in improving concrete properties. The waste additions type fly ash and fibers were incorporated in polymer concrete. The study focused on fibers type glass, polyester, metallic and cellulose. The mechanical properties such as compressive strength, flexural strength and split tensile strength were investigated having in view the type, dosage and length of fibers. The results show that fibers improved mechanical properties in comparison with that of polymer concrete without fibers, the test results being differently influenced by the factors which were considered.


2018 ◽  
Vol 174 ◽  
pp. 02013
Author(s):  
Maciej Gruszczyński ◽  
Grzegorz Bajorek

The subject of the paper is presentation of action mechanism and effectiveness estimation of different types of chemical admixtures that make it possible to control the course of shrinkage strains associated with cement hydration process. There are presented tests results from the research program realization in which there were used the basic types of admixtures allowing for producing mortars and concretes with reduced or compensated shrinkage. In conducted tests there were applied admixtures based on calcium oxide, multi-molecule alcohol as well as water polymer dispersions (styrene-acrylic co-polymer - SA and styrene-butadiene latex - SBR). Their influence onto the magnitude of shrinkage strain and strength development for cement mortars was analyzed.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Kadir Güçlüer ◽  

Concrete is the most important material in construction industry. Aggregate is one of the most important components of concrete, which consists of many different components. In this study, concrete of constant water/cement ratio was produced by using different types of aggregates, and the effect of aggregate on concrete properties was investigated. After determining the physical properties of the aggregates, the textural properties of the aggregates were investigated with the help of image analysis. Standard water cure was applied to concrete test samples for 7, 28, 90, and 180 days. After the curing process, the physical and mechanical properties of the samples were determined by destructive and nondestructive methods. Thin section samples were taken from hardened concrete samples, and cement aggregate interface investigations were performed under microscope. As a result, it has been determined that aggregate type creates a change in concrete strength, and this situation is related to aggregate properties.


Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


2017 ◽  
Vol 50 (3) ◽  
pp. 241-255 ◽  
Author(s):  
Seyfullah Keyf

In this article, 50/70 penetration grade TUPRAS bitumen was modified. Reactive elastomeric terpolymer (Elvaloy RET; DuPont Company), ethylene vinyl acetate (EVA) and styrene–butadiene–styrene (SBS) polymers were used in bitumen modification. Set hours of the tests were applied to samples taken from the obtained modified bitumen mixture. Varying amount of reactive ethylene terpolymer with weight ratios of 0.5%, 1.0%, 1.5%, 2.0% and 2.5% were introduced to the mixture of raw bitumen with 1.0% SBS and 1.0% EVA. Penetration, penetration index, softening point, ductility and elastic recovery tests were performed with these modified bitumen and raw bitumen. The samples of raw bitumen and modified bitumens of 2.0% Elvaloy RET, 1.0% SBS and 1.0% EVA were investigated by means of IR spectroscopy. The raw bitumen was modified with SBS, EVA and RET, and it was determined that penetration and ductility values were decreased while penetration index, softening point and elastic recovery were increased. The purpose of this study is to research the improving properties of 50/70 penetration grade–modified bitumen used in highways of Turkey. The most important characteristics (such as softening point, penetration and % elastic recovery) of new polymer-modified bitumen (NPMB) containing 2.5% EVA, 1% RET and 1% SBS were compared with eight different types of polymer-modified bitumens in Turkey (TPMB). NPMB provided all required parameters (softening point, penetration and % elastic recovery) for five different types of TPMBs (TPMB 70-16, TPMB 70-22, TPMB 76-16, TPMB 76-22 and TPMB 82-16).


2016 ◽  
Vol 9 (3) ◽  
pp. 414-434
Author(s):  
J. D. Ditz ◽  
M. K. EL Debs ◽  
G. H. Siqueira

ABSTRACT This research aims to analyze the compressive stress transfer between precast concrete elements using cement mortar pads modified with polypropylene fibers, styrene-butadiene latex and heat-expanded vermiculite. The stress transfer analyses are performed interleaving a cementbearing pad between two concrete blocks, subjecting the entire specimen to different compressive load tests. The parameters analyzed in the tests are: surface roughness (using bosses on the bonded phase of different thicknesses), compressive strength with monotonic and cyclic loadings. The main results obtained in this study are: a) the presence of pad increased the strength in 24% for thicknesses of imperfections of 0.5 mm and approximately 12% for smooth faces blocks; b) gain of effectiveness of the bearing pad when the concrete strength was reduced; c) for cyclic loading, the bearing pad increased in 48% the connections strength.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 376
Author(s):  
Oleksandr Semko ◽  
Olga Gukasian ◽  
Serhii Skliarenko

The paper sums up a series of experimental studies describing the influence of most types of concreting common defects, such as core weakening: weak compression inclusions, voids, height heterogeneity of concrete. The basis of the experimental study is the research on the concrete core production conditions influence on tube confined concrete elements and the change in physical and mechanical characteristics of the elements. The concrete strength is estimated based on the results of the study of specially shaped samples with given dimensions. According to the results of concreting samples with different types of modeled defects (abnormalities) inspection, the most dangerous damages of the concrete core were identified and different variants of the height strength retrogression of the elements under study were analyzed. As a result, the degree and type of damage to the tube confined concrete elements core of the samples, which affect the fracture pattern, was established. 


2020 ◽  
Vol 12 ◽  
pp. 18-20
Author(s):  
Olga N. Ordina ◽  

In the administrative and legal science there is a refinement, change and expansion of the subject of the dynamic branch of administrative law, aimed at eliminating the resulting lag of legal theory from the legal reality. In our view, of the three basic categories that characterize the subject of administrative law, “public administration”, “executive power” and “administrativepublic activity”, the main generalization category is the category “administrative and public activities”. The phenomenon of the subject of administrative law refracts the problems and discussions inherent in the industry as a whole. In view of the existence of different points of view on the subject of administrative law, the legal science has not yet formulated a single definition of it. There is a tendency to overcome the conflict between different types of understanding, to bring together the positions of different concepts of understanding of administrative law in order to form a “universal” concept of it, to develop its common concept.


Sign in / Sign up

Export Citation Format

Share Document