An Application of Dunaliella Salina Algae: Biodiesel

2014 ◽  
Vol 953-954 ◽  
pp. 281-283 ◽  
Author(s):  
Hai Tian Yu ◽  
Fu Li Tian ◽  
Hong Yu Wang ◽  
Ying Hui Hu ◽  
Wan Li Sheng

Biodiesel has been receiving increasing attention as a potential sustainable fuel. It is used for diesel engines and is becoming well-known as an environmentally friendly fuel due to its non-toxic and biodegradable characteristics. As biodiesel production, Dunaliella salina algae could be an alternative raw material. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, algae has been identified as promising feedstocks for industrial-scale production of biodiesel [1]. The oil content of Dunaliella salina algae may exceed to 35%. Using two-step catalytic conversion, algae oil with high free fatty acid and triglyceride content was converted to biodiesel by esterification and transesterification. The conversion rate reached 98% under the ratio of 10:1 at 65°C for 2h,using catalysis with 2% solid superacid.

Author(s):  
Daniel Sena MARINS ◽  
Marcos Vinícius Oliveira CARDOSO ◽  
Mara Eliza SANTOS ◽  
Jeferson MASSINHAN

Demand for diversified biodiesel feedstocks is high and increasing, but few are viable for large-scale production, and many of those selected compete with other sectors of the chemical industry. To improve energy and environmental sustainability, fatty acids from waste oils that are improperly disposed of and pollute the environment can be used for transesterification reactions. However, they need treatment to achieve high conversion rates. In this context, the aim of this work was to perform and analyze the treatment of residual frying oil with the evaporation and entrainment process, aiming at its use as raw material to obtain biodiesel (methyl esters) by a transesterification reaction. The physicochemical properties of the residual oil after treatment were characterized by moisture content, pH and the acidity, saponification, iodine, and peroxide index. The conversion rate of the residual oil to methyl esters was determined by 1H NMR analysis. After the treatment, the method of analysis of variance showed that the oil obtained a significant reduction of the saponification, iodine, peroxide and acidity indexes, being the acidity reduced from 9.36 to 7.85 mg KOH g-1. The moisture content of 0.733% and elevation of pH to 8.0. The conversion rate of fatty acid biodiesel of residual oil was 79.3 %, lower value of standards norms (ASTM, 2005; EN, 2008; ANP, 2014), showing that the assigned methodology for frying residual oil is inefficient in biodiesel production.


Author(s):  
Daniel Sena Marins ◽  
Marcos Vinícius Oliveira Cardoso ◽  
Mara Eliza Santos ◽  
Jeferson Massinhan

Demand for diversified biodiesel feedstocks is high and increasing, but few are viable for large-scale production, and many of those selected compete with other sectors of the chemical industry. To improve energy and environmental sustainability, fatty acids from waste oils that are improperly disposed of and pollute the environment can be used for transesterification reactions. However, they need treatment to achieve high conversion rates. In this context, the aim of this work was to perform and analyze the treatment of residual frying oil with the evaporation and entrainment process, aiming at its use as raw material to obtain biodiesel (methyl esters) by a transesterification reaction. The physicochemical properties of the residual oil after treatment were characterized by moisture content, pH and the acidity, saponification, iodine, and peroxide index. The conversion rate of the residual oil to methyl esters was determined by 1H NMR analysis. After the treatment, the method of analysis of variance showed that the oil obtained a significant reduction of the saponification, iodine, peroxide and acidity indexes, being the acidity reduced from 9.36 to 7.85 mg KOH g-1. The moisture content of 0.733 % and elevation of pH to 8.0. The conversion rate of fatty acid biodiesel of residual oil was 79.3 %, lower value of standards norms (ASTM, 2005; EN, 2008; ANP, 2014), showing that the assigned methodology for frying residual oil is inefficient in biodiesel production


2020 ◽  
Author(s):  
Mateus S. Amaral ◽  
Carla C.A. Loures ◽  
Fabiano L. Naves ◽  
Gisella L. Samanamud ◽  
Messias B. Silva ◽  
...  

The search for a renewable source as an alternative to fossil fuels has driven the research on new sources of biomass for biofuels. An alternative source of biomass that has come to prominence is microalgae, photosynthetic micro-organisms capable of capturing atmospheric CO2 and accumulating high levels of lipids in their biomass, making them attractive as a raw material for biodiesel synthesis. Thus, various studies have been conducted in developing different types of photobioreactors for the cultivation of microalgae. Photobioreactors can be divided into two groups: open and closed. Open photobioreactors are more susceptible to contamination and bad weather, reducing biomass productivity. Closed photobioreactors allow greater control against contamination and bad weather and lead to higher rates of biomass production; they are widely used in research to improve new species and processes. Therefore, many configurations of closed photobioreactors have been developed over the years to increase productivity of microalgae biomass.


Eksergi ◽  
2015 ◽  
Vol 12 (2) ◽  
pp. 12 ◽  
Author(s):  
Renung Reningtyas ◽  
M Mahreni

Surfactant is an amphipilic chemical structure which contains the hydrophobic and hydrophilic groups. Surfactant has ability to lower surface tension between two liquids. Surfactant has been used in many industries, such as cosmetics, food, textile, petroleum, and pharmacy industry. Nowdays, most of surfactant used in industries are still based on petroleum resources. The applicationsof this nonbiodegradable surfactant in industry promote environmental problem. Biosurfactant is a biodegradable surfactant that produced from microorganism or natural resources. Biosurfactant produced from microorganism contains Rhamnolipid and Lipopeptide. Surfactin and Dactomicin made from microorganism with antibacterial activity are the examples. Bottle necks of the production of biosurfactant form microorganism are their slow process, high purification cost, and high product price. Biosurfactant from natural resources are potentially produced in large scale due to their fast process and relatively cheap raw material. Metil Ester Sulphonate (MES) is one of biosurfactant produced from natural resources (from palm oil). The other example is biosurfactant from esterification of carbohydrate and carboxylic acid. This paper reviews the literatures dealing with biodegradable surfactant development which can be used as a reference of a research path way and an industrial scale production of biodegradable surfactant.


2020 ◽  
Vol 10 (22) ◽  
pp. 8181
Author(s):  
Mladen Bošnjaković ◽  
Nazaruddin Sinaga

We have had high expectations for using algae biodiesel for many years, but the quantities of biodiesel currently produced from algae are tiny compared to the quantities of conventional diesel oil. Furthermore, no comprehensive analysis of the impact of all factors on the market production of algal biodiesel has been made so far. This paper aims to analyze the strengths, weaknesses, opportunities, and threats associated with algal biodiesel, to evaluate its production prospects for the biofuels market. The results of the analysis show that it is possible to increase the efficiency of algae biomass production further. However, because the production of this biodiesel is an energy-intensive process, the price of biodiesel is high. Opportunities for more economical production of algal biodiesel are seen in integration with other processes, such as wastewater treatment, but this does not ensure large-scale production. The impact of state policies and laws is significant in the future of algal biodiesel production. With increasingly stringent environmental requirements, electric cars are a significant threat to biodiesel production. By considering all the influencing factors, it is not expected that algal biodiesel will gain an essential place in the fuel market.


2018 ◽  
Vol 11 (2) ◽  
pp. 108
Author(s):  
Arief Budiman ◽  
Alita Lelyana ◽  
Daniar Rianawati ◽  
S Sutijan

Palm fatty acid distillate (PFAD) is a lower-value by-product obtained during the refining of palm oil and contained high amount of free fatty acid (FFA). However, it’s a potentially valuable and low-cost raw material for the production of biodiesel through esterification process. Esterification of FFA using the conventional batch faces a challenge since it is low in productivity and requires high excess of reactant so that it is not efficient for large-scale production. To overcome this problem, reactive distillation (RD) is the best candidate. RD is one of the most attractive equipment which provides potential benefits for the esterification reaction. To obtain an optimal design of the RD, an accurate model and simulation of the process is needed. In this work, a simulation study of biodiesel production from PFAD as feedstock using RD is presented by using ASPEN Plus v7.1. Two case studies of total reflux (case A) and recycled distillate (case B) were demonstrated. Close relation was found among high separation and high energy consumption in RD. Two models of RD show the more economical heat duty of both condenser and reboiler. Effect of L/F ratio, number of stages in reaction zone, and model of RD to conversion of esterification reaction were discussed. Keywords: biodiesel, esterification, PFAD, reactive distillationAbstrakSuatu produk hasil samping yang memiliki nilai ekonomi rendah, biasa dikenal sebagai Palm Fatty Acid Distilate (PFAD), diperoleh dari proses pemurnian minyak kelapa sawit. PFAD mengandung asam lemak bebas (FFA) tinggi, cukup potensial, dapat digunakan sebagai bahan baku produksi biodiesel melalui proses esterifikasi. Esterifikasi FFA dengan proses batch konvensional menghadapi tantangan karena produktivitasnya cukup rendah dan membutuhkan excess reaktan yang tinggi sehingga tidak efisien jika diterapkan untuk produksi skala besar. Reactive distillation (RD) dapat menjadi solusi untuk mengatasi masalah ini. RD merupakan alat yang berpotensi memberikan keuntungan dalam reaksi esterifikasi. Untuk mendapatkan desain yang optimal dari suatu RD, pemodelan yang akurat dan simulasi dari proses ini diperlukan. Di sini, dilakukan simulasi produksi biodiesel dari PFAD menggunakan RD dilakukan dengan ASPEN Plus v7.1. Dua kasus dipelajari, yaitu refluks total (kasus A) dan recycle distillate (kasus B) yang bertujuan untuk mempelajari pengaruh rasio antara cairan yang dikembalikan ke kolom dengan feed (L/ F), dan variable variable desain. Semakin tinggi kemurnian dari hasil pemisahan, konsumsi energi yang dibutuhkan juga menjadi semakin besar. Perbandingan antara dua model dari kolom distilasi reaktif menunjukkan beban panas kondensor dan reboiler menjadi lebih ekonomis. Pengaruh perbandingan L/F, jumlah stage dalam zona reaksi, dan model kolom distilasi reaktif terhadap konversi reaksi esterifikasi akan di bahas di sini.Kata kunci: biodiesel, esterifikasi, PFAD, menara distilasi


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


2020 ◽  
Vol 18 (1) ◽  
pp. 874-881
Author(s):  
Laras Prasakti ◽  
Sangga Hadi Pratama ◽  
Ardian Fauzi ◽  
Yano Surya Pradana ◽  
Arief Budiman ◽  
...  

AbstractAs fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.


2021 ◽  
Vol 3 (1) ◽  
pp. 19-36
Author(s):  
Tamás Mizik ◽  
Gábor Gyarmati

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.


Sign in / Sign up

Export Citation Format

Share Document