Life Cycle Assessment for Coal Derived Methanol Transportation Pathway

2014 ◽  
Vol 962-965 ◽  
pp. 1608-1611
Author(s):  
Xiu Fen Wang ◽  
Yi Shen ◽  
Chun Hui Qu ◽  
Ji Lai Zeng ◽  
Tian Tian ◽  
...  

According situation of the existing coal to methanol industry, we used life cycle assessment method, established a coal to methanol model for transportation pathway. Comprehensive assessment of its energy efficiency, CO2 emissions and economic costs performance. In terms of energy efficiency, coal-to-methanol for transportation pathway is 9.51%, and terminal power consumption accounts for 31% of the entire model. In terms of CO2 emissions, the CO2 emissions is 892.27g/MJ of whole model. In methanol production processes, it emissions a lot of CO2 and loses a lot of energy. In terms of economic cost, the methanol produced by coal-to-methanol technology is able to make a profit.

2019 ◽  
Vol 136 ◽  
pp. 01009
Author(s):  
Gensheng Gui

With the application of life cycle assessment method, according to the life cycle assessment standard, the Tesla Model 3 life cycle GHG emissions are accounted applying the CALCM and GREET in this paper obtaining the following conclusions: firstly, the GHG emissions value per unit distance of Tesla Model 3 is 376gCO2e/km, 17% higher than the average GHG emissions of B class ICEV in China, attributing mainly to the high power consumption during driving.


2019 ◽  
Vol 12 (1) ◽  
pp. 294 ◽  
Author(s):  
Zhuyuan Xue ◽  
Hongbo Liu ◽  
Qinxiao Zhang ◽  
Jingxin Wang ◽  
Jilin Fan ◽  
...  

The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3612 ◽  
Author(s):  
Yanmei Li ◽  
Ningning Ha ◽  
Tingting Li

To study the impact of the promotion of electric vehicles on carbon emissions in China, the full life carbon emissions of electric vehicles are studied on the basis of considering such factors as vehicle weight and grid mix composition, and fuel vehicles are added for comparison. In this paper, we collect data for 34 domestic electric vehicles, and linear regression analysis is used to model the relationship between vehicle weight and energy consumption. Then, a Hybrid Life Cycle Assessment method is used to establish the life cycle carbon emission calculation model for electric vehicles and fuel vehicles. Finally, the life cycle carbon emissions of electric vehicles and fuel vehicles under different electrical energy structures are discussed using scenario analysis. The results show that under the current grid mix composition in China, the carbon emissions of electric vehicles of the same vehicle weight class are 24% to 31% higher than that of fuel vehicles. As the proportion of clean energy in the grid mix composition increases, the advantages of electric vehicles to reduce carbon emissions will gradually emerge.


2019 ◽  
Vol 944 ◽  
pp. 1137-1143 ◽  
Author(s):  
Ke Wei Lu ◽  
Xian Zheng Gong ◽  
Bo Xue Sun ◽  
Qing Ding

Tungsten is an important strategic metal, widely used in cemented carbide manufacturing, steel industry, and other economic fields. The amount of tungsten resource consumed in China each year accounts for more than 80% of the world’s annual total consumption. The purpose of this study is to quantify the environmental impact of tungsten production in China through the method of LCA. The result shows that, regarding the contributions of impact categories, the normalized value of HTP is the largest one among various impact categories, which accounts for 35.39% of the total environmental impact, followed by AP, PMFP, GWP, MDP, FDP, and POFP, respectively. The results also show that, regarding the contributions of production processes, smelting process is the largest contributor to the environmental burden of tungsten production due to the crystallization and calcination reduction occurred in the smelting process consumes a large amount of electricity, followed by mining, beneficiation, and transportation, respectively. The major academic contribution of this paper to the existing literatures is that we employed process-based analysis method, which could improve the accuracy of the study and provide practical advices for tungsten enterprises to reduce the environmental impact.


2020 ◽  
Vol 186 ◽  
pp. 107358 ◽  
Author(s):  
D. Satola ◽  
A.B. Kristiansen ◽  
A. Houlihan-Wiberg ◽  
A. Gustavsen ◽  
T. Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document