Experimental Investigations of Tool Wear Mechanisms in Machining 1Cr18Ni9Ti Stainless Steel

2010 ◽  
Vol 97-101 ◽  
pp. 1858-1862
Author(s):  
Fa Zhan Yang ◽  
Jun Zhao ◽  
Cheng Liang Sun ◽  
Guang Yao Meng

The purpose of this investigation is to recognize the wear mechanisms of cemented carbide tools in dry hard turning of stainless steel (1Cr18Ni9Ti). From the view point of machining, stainless steels are often considered as poor machinability materials. Turning tests were carried out by using a CA6140 lathe and a cutting force measuring device. For this purpose, both microscopic and microstructural aspects of the tools were taken into consideration. Meanwhile, the cutting forces are also measured in the experiment. The chips were analyzed by scanning electron microscopy. The machinability of 1Cr18Ni9Ti austenitic stainless steels is examined in terms of tool life and cutting parameter presented in this paper. Results show that cutting forces vary greatly with the experimental cutting parameters. Analysis indicated that tool wear mechanisms observed in the machining tests involve abrasion wear, thermal and fatigue shock wear and adhesive wear.

2013 ◽  
Vol 459 ◽  
pp. 424-427 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda

The content of this article also focuses on the analysis of the tool life of screw drills. This paper presents the conclusions of tests on a stainless steel DIN 1.4301.The results of the article are conclusions for working theory and practice for drilling of stainless steels. Based on the cutting tests, cutting speeds of 30 to 60 m/min, feed rate of 0.04to0.1 mm and screw drill carbide monolite.


2012 ◽  
Vol 217-219 ◽  
pp. 2202-2205 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda ◽  
Marcel Behún ◽  
Andrej Berdis ◽  
Ján Gecák ◽  
...  

This article presents the results of experiments that concerned on the tool wear and tool wear mechanisms by drilling of a new Extra Low Carbon (ELC) austenitic stainless steel X02Cr16Ni10MoTiN. This article presents conclusions of machinability tests on new austenitic stainless steels X02Cr16Ni10MoTiN. The results of cutting zone evaluation under cutting conditions (cutting speed in interval vc=30-50 m/min, depth of cut ap=4.0 mm and feed f=0.02-0.08 mm per rev.).


2010 ◽  
Vol 39 ◽  
pp. 369-374 ◽  
Author(s):  
Jozef Jurko

In this paper presents the conclusions of machinability tests on a new stainless steel X4Cr17Ni8TiN, which applicated in food processing industry, and describes important concurrent parameters for the cutting zone during the process of finish drilling. This paper presents the results of experiments that concerned the verification of temperature fields in tool and the machined surface by drilling of stainless steels X4Cr17Ni8TiN. The content of this paper also focuses on the analysis of selected domains through basic indicators of steel machinability: cutting edge tool life, surface roughness, and wear mechanisms. The machinability of stainless steels is examined based on the cutting tests. The effect of cutting speed are analysed by tool wear mechanisms, and temperature tool. Based on the cutting tests, cutting speeds of 40 to 80 m/min, feed rate of 0.04 to 0.1 mm per rev.and solid a new design of screw drill from sintered carbide with hydraulic holder. Diameter of screw drill is 5.5 mm. Tool wear criterion of VBK value 0.12 mm. Wear mechanisms analysed by Semi Electron Microscopy (SEM).


2013 ◽  
Vol 770 ◽  
pp. 74-77 ◽  
Author(s):  
Jin Xing Kong ◽  
Liang Li ◽  
Dong Ming Xu ◽  
Ning He

Pure iron is a kind of high plasticity and toughness material. In the process of cutting pure iron, the tool wear is very serious. In this paper, three kinds of cutting tools KC5010, K313 and 1105 are used in the cutting pure iron process and the tool wear tests in dry cutting condition with different cutting parameters have been carried out. According to the results, the tool wear mechanisms and tool life of three kinds of cutting tools have been compared and analyzed. It is concluded that the tool life of K313 is better than KC5010 and 1105 and the three kinds of tool mechanisms are primarily adhesion wear, diffusion wear and oxidation wear.


2016 ◽  
Vol 87 (9-12) ◽  
pp. 3157-3168 ◽  
Author(s):  
Anselmo Eduardo Diniz ◽  
Álisson Rocha Machado ◽  
Janaina Geilser Corrêa

2014 ◽  
Vol 657 ◽  
pp. 23-27
Author(s):  
M. Grzegorz Krolczyk ◽  
Stanisław Legutko ◽  
W. Radoslaw Maruda

The study presents the contribution in engineering of surfaces particularly in surface morphology of Austenitic Stainless Steels. The objective of the investigation was to determine the surface morphology of austenitic stainless steel after turning with coated carbide tool point. The investigation included geometrical parameters of SI for different cutting parameters in dry turning process of austenitic stainless steel. The study has been performed within a production facility during the production of electric motor parts and deep-well pumps.


2012 ◽  
Vol 472-475 ◽  
pp. 1087-1090
Author(s):  
Fa Zhan Yang ◽  
Xin Zhuang ◽  
Wan Hua Zhao ◽  
Yong Yang

The purpose of this investigation is to examine the machining behavior of cemented carbide tools in dry hard milling of cellular aluminium alloy (6N01) by experiments and finite-element analysis. From the machining point of view, Cellular aluminium alloy are often considered as poor machinability materials. Milling tests were carried out by using a three-head milling machine and a milling force measuring device. For this purpose, both microscopic and microstructural aspects of the tools were taken into consideration. Meanwhile, the cutting forces and the noise intensity are also considered in the experiment. Results show that cutting forces vary greatly with the experimental cutting parameters. Additionally, the noise field intensity increased greatly as the feed rate increased. Analysis indicated that the major tool wear mechanisms observed in the machining tests involve adhesive wear and abrasion wear.


2008 ◽  
Vol 392-394 ◽  
pp. 55-59 ◽  
Author(s):  
Yong Tang ◽  
Bang Yan Ye ◽  
Qiang Wu ◽  
W.W. Wang ◽  
Xing Yu Lai

Based on reviewing the applications and machining of the stainless steels, the cutting performance of the austenitic stainless steel 1Cr18Ni9Ti is analyzed through the contrastive experiments. This paper studies drilling minipore mechanics of hard-to-cut material—Austenitic Stainless Steel 1Cr18Ni9Ti by simulation and experiment, analogy results displays the trend that drill thrust, torque and temperature changed with amount of feed, it matches with test result in the same cutting condition well. The research results would be of great benefit for the selection of proper tools and cutting parameters in drilling austenitic stainless steels.


2012 ◽  
Vol 224 ◽  
pp. 204-207
Author(s):  
Jozef Jurko ◽  
Anton Panda ◽  
Marcel Behún

This article presents conclusions of use TiAlN at drilling of a new austenitic stainless steels. This article presents the results of experiments that concerned the verification of the cutting tool wear. The results of cutting zone evaluation under cutting conditions (cutting speed vc=60 m/min, depth of cut ap= 3.0 mm and feed f= 0.04 mm per rev.) .


Sign in / Sign up

Export Citation Format

Share Document