Nonlinear Dynamic Behaviors and Bifurcation of Symmetrical Rotor System Supported by Self-Acting Gas Jounal Bearings

2010 ◽  
Vol 97-101 ◽  
pp. 2634-2638 ◽  
Author(s):  
Wei Min Wang ◽  
Yan Jun Lu ◽  
Zhi Jun Cao ◽  
Yong Fang Zhang ◽  
Lie Yu

The unbalanced response and corresponding bifurcation behavior of the rotor dynamic system supported by gas journal bearings are investigated. A time-dependent mathematical model is used to describe the pressure distribution of gas journal bearing with nonlinearity. The rigid Jeffcott rotor with self-acting gas journal bearing supports is modeled. The finite difference method and the Successive Over Relaxation (S.O.R.) method are employed to solve the time-dependent Reynolds equation of gas journal bearings. The bifurcation of unbalanced responses of the rotor is analyzed by a Poincaré map. The numerical results reveal periodic, period-doubling, quasi-periodic, and chaotic motion of rich and complex non-linear behaviors of the system.

1964 ◽  
Vol 86 (2) ◽  
pp. 405-413 ◽  
Author(s):  
R. J. Wernick ◽  
C. H. T. Pan

The Reynolds equation applicable to a self-acting partial-arc gas journal bearing is perturbed in terms of the compressibility number Λ. The resulting set of equations is then put into a standard form and Galerkin’s method is used to obtain bearing loads and stability derivatives. These results are expressed in a power series in Λ.


2011 ◽  
Vol 230-232 ◽  
pp. 197-201
Author(s):  
Yong Fang Zhang ◽  
Xiao Lei Shi ◽  
Yan Jun Lu ◽  
Lie Yu

Based on the nonlinear theory, the unbalanced responses of the gas-lubricated journal bearing-rotor system are investigated. A time-dependent mathematical model is established to describe the pressure distribution of gas-lubricated journal bearing with nonlinearity. The rigid rotor with gyroscopic effect supported by self-acting gas journal bearing with three axial grooves is modeled. The differential transformation method is employed to solve the time-dependent gas-lubricated Reynolds equation, and the dynamic motion equation is solved by Newmark-β method. The unbalanced responses of the rotor system supported by finite gas-lubricated journal bearings are analyzed by bifurcation diagram, orbit diagram, Poincaré map. The numerical results reveal periodic, period-4 motion of nonlinear behaviors of the system.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


Author(s):  
Marcel Mahner ◽  
Pu Li ◽  
Andreas Lehn ◽  
Bernhard Schweizer

A detailed elasto-gasdynamic model of a preloaded three-pad air foil journal bearing is presented. Bump and top foil deflections are herein calculated with a nonlinear beamshell theory according to Reissner. The 2D pressure distribution in each bearing pad is described by the Reynolds equation for compressible fluids. With this model, the influence of the assembly preload on the static bearing hysteresis as well as on the aerodynamic bearing performance is investigated. For the purpose of model validation, the predicted hysteresis curves are compared with measured curves. The numerically predicted and the measured hysteresis curves show a good agreement. The numerical predictions exhibit that the assembly preload increases the bearing stiffness (in particular for moderate shaft displacements) and the bearing damping.


1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


Author(s):  
Bikash Routh

In the present paper Reynolds equation of lubrication under micro-polar fluid for journal bearing is solved by direct-integration method under infinitely long and infinitely short journal bearing assumptions [1]. Infinitely long-bearing and infinitely short bearing solutions are the two available approximate closed form solutions for journal bearings. In the present investigation, solution of Reynolds equation i.e. pressure profile is compared with pressure profile obtained by previously used approximate method like finite difference method (FDM). Mentionable here that any approximation method needs lots of calculation and computer programing to get the result. In the present work it has been found that direct-integration method leads the almost same result as the conventionally used complex finite difference method. CFD analysis is also presented in the present work to justify the profile obtained by direct numerical method. It has seen here that theoretical and simulation results are in good agreement to each other’s.


Author(s):  
Wei Li ◽  
Manish Thorat

A fast and efficient method for evaluating bearing coefficients of the fixed geometry bearings is presented. In a typical industrial application, where the accuracy of the solution is desired, this paper presents a method whose accuracy is verified to be good by the benchmark study. Reynolds equation is solved to obtain non-dimensionalised static and rotor-dynamic characteristics for a pre-defined bearing pad geometry. The solution in the form of non-dimensional functions is obtained for a 2 dimensional space representing all possible journal loci for any load vector orientation. Laminar flow is considered in the analysis, although the method of analysis can be extended to Turbulent flow regime. The analysis method is most efficient for isoviscous boundary condition. A pad assembly method for the fixed pad journal bearings is presented. Any fixed pad bearing geometry including multi-pad bearings, preload with any load vector orientation can be evaluated using this method. In this paper, demonstrating cases for a four-pad bearing are presented.


Author(s):  
Sanyam Sharma ◽  
Chimata M Krishna

The plain circular journal bearings are not found to be stable by researchers when used in high speed rotating machineries. Hence, extensive research in the study of stability characteristics of non-circular bearings or lobed bearings assumed importance, of late. Present article deals with the stability analysis of non-circular offset bearing by taking selected set of input and output parameters. Modified Reynolds equation for micropolar lubricated rigid journal bearing system is solved using finite element method. Two kinds of input parameters namely, offset factors (0.2, 0.4) and aspect ratios (1.6, 2.0) have been selected for the study. The important output characteristics such as load, critical mass, whirl frequency ratio, and threshold speed are computed and plotted for various set of values of input parameters. The results obtained indicate that micropolar lubricated circular offset bearing is highly stable for higher offset factor and higher aspect ratio.


1970 ◽  
Vol 12 (2) ◽  
pp. 116-122 ◽  
Author(s):  
H. F. Black

The application of a perturbation in terms of simple correlations for friction in turbulent Couette and ‘screw’ flows, together with a further empirical assumption consonant with the experimental work of Smith and Fuller (1), leads to a pressure field equation identical in form with the Reynolds equation. The load capacity of journal bearings throughout most of the superlaminar range may be represented by a single curve, and existing laminar solutions may be applied with the parameters modified by Reynolds number. The theory is compared with published experimental results, and with the most successful theoretical treatment (4). The correlations obtained confirm the adequacy of the theory to predict performance in the superlaminar régime.


Sign in / Sign up

Export Citation Format

Share Document