Exploiting Critical Path Method for Evaluation of Conceptual Design

2010 ◽  
Vol 97-101 ◽  
pp. 4429-4432 ◽  
Author(s):  
Mei Yan Wang ◽  
Lian Guan Shen ◽  
Yi Min Deng

Conceptual design is a critical design phase during which initial design solutions, called design concepts, are developed. These design concepts must be evaluated to ensure they satisfy the specified design requirements and the most appropriate design concept must be selected. It is often difficult for the designer, especially for the novice, to make an appropriate design concept evaluation and selection. Existing work on design evaluation lacks an effective tool for evaluating the temporal performance of the design concepts. To address this problem, a Critical Path Method (CPM) from project management is adapted for design evaluation, whereby a CPM network is converted from a causal behavioral process (CBP) and the methodologies relating to CPM are also applied to design improvement. A case study of a lever-clamp assembly system is also presented to illustrate as well as validate the method.

2017 ◽  
Vol 41 (3) ◽  
pp. 489-497
Author(s):  
Nien-Te Liu ◽  
Chang-Tzuoh Wu ◽  
Yung-Chun Lin

The purpose of this paper is to propose a simple and quick process for creating new design concepts for human-powered vehicles. First, the design theme for an innovative bicycle is described. Next, the functional elements of the bicycle are selected according to the contents described in the design theme. Based on the design requirements, various spatial arrangements of the creative functional elements are produced. In the final step, we followed the flowchart of the creative functional elements constructed by this research and demonstrated a case study design.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3469
Author(s):  
Ji Han ◽  
Pingfei Jiang ◽  
Peter R. N. Childs

Although products can contribute to ecosystems positively, they can cause negative environmental impacts throughout their life cycles, from obtaining raw material, production, and use, to end of life. It is reported that most negative environmental impacts are decided at early design phases, which suggests that the determination of product sustainability should be considered as early as possible, such as during the conceptual design stage, when it is still possible to modify the design concept. However, most of the existing concept evaluation methods or tools are focused on assessing the feasibility or creativity of the concepts generated, lacking the measurements of sustainability of concepts. The paper explores key factors related to sustainable design with regard to environmental impacts, and describes a set of objective measures of sustainable product design concept evaluation, namely, material, production, use, and end of life. The rationales of the four metrics are discussed, with corresponding measurements. A case study is conducted to demonstrate the use and effectiveness of the metrics for evaluating product design concepts. The paper is the first study to explore the measurement of product design sustainability focusing on the conceptual design stage. It can be used as a guideline to measure the level of sustainability of product design concepts to support designers in developing sustainable products. Most significantly, it urges the considerations of sustainability design aspects at early design phases, and also provides a new research direction in concept evaluation regarding sustainability.


Author(s):  
Jiangyan Lu ◽  
Yushuai Lang

To summarize the problems and needs of the current rural life, identify the pathway that suits the sustainable development of rural areas, and propose the design concept and method that meet the current rural ecological design requirements. Use the organized research approaches. This chapter makes a case study of Nanma Village, provides the theoretical and design practice reference for the rural sustainable development in China, and establishes the knowledge and methodology system that meets the requirements of rural sustainable development. This chapter proposes the design concept and method in line with the current requirements of rural ecological design, suggests that the current village design should be adapted to “local conditions,” and indicates that the harmonious development between human and environment will be a new possible direction for the rural sustainable development and design in future.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Bradley Camburn ◽  
Yuejun He ◽  
Sujithra Raviselvam ◽  
Jianxi Luo ◽  
Kristin Wood

Abstract In order to develop novel solutions for complex systems and in increasingly competitive markets, it may be advantageous to generate large numbers of design concepts and then to identify the most novel and valuable ideas. However, it can be difficult to process, review, and assess thousands of design concepts. Based on this need, we develop and demonstrate an automated method for design concept assessment. In the method, machine learning technologies are first applied to extract ontological data from design concepts. Then, a filtering strategy and quantitative metrics are introduced that enable creativity rating based on the ontological data. This method is tested empirically. Design concepts are crowd-generated for a variety of actual industry design problems/opportunities. Over 4000 design concepts were generated by humans for assessment. Empirical evaluation assesses: (1) correspondence of the automated ratings with human creativity ratings; (2) whether concepts selected using the method are highly scored by another set of crowd raters; and finally (3) if high scoring designs have a positive correlation or relationship to industrial technology development. The method provides a possible avenue to rate design concepts deterministically. A highlight is that a subset of designs selected automatically out of a large set of candidates was scored higher than a subset selected by humans when evaluated by a set of third-party raters. The results hint at bias in human design concept selection and encourage further study in this topic.


Author(s):  
D. Xue ◽  
H. Yang ◽  
Y. L. Tu

This research introduces an evolutionary design database model to describe design requirements and design results developed at different design stages from conceptual design to detailed design. In this model, the evolutionary design database is represented by a sequence of worlds corresponding to the design descriptions at different design stages. The design requirements and design results in each world are modeled using a database representation scheme that integrates both geometric descriptions and non-geometric descriptions. In each world, only the differences with its ancestor world are recorded. When the design descriptions in one world are changed, these changes are then propagated to its descendant worlds automatically. Consistency of the design descriptions in descendant worlds is also checked when design descriptions in an ancestor world are changed. Case study is conducted to show the effectiveness of this evolutionary design database model.


Author(s):  
Kenji Iino ◽  
Masayuki Nakao

Abstract Students at three graduate schools of mechanical engineering and adult groups in Japan have been taking conceptual design courses the authors teach. Among the three graduate schools, the 24 hour course, at the University of Tokyo, spread over 13 classes during 4 months, takes the students all the way from identifying their design goals, generating ideas, refining their designs, to building prototypes. The adult course students also spend long hours of building prototypes. Despite strong encouragement by the instructors for detail design, the students often leave their design concepts at rough stages without refining their ideas to the detail level needed for prototype building. Building a prototype from a design concept that is not fully expanded often results in efforts that lead to failure and retrial. Such back and forth between concepts and physical trial is unavoidable in design, however, if possible they better be kept at the minimum. The instructors, in their efforts to better motivate students to refine the designs, developed a metric “Level of Readiness (LOR) index” for evaluating how refined a design is. Students are better motivated to reach higher scores and this index that evaluate the quality of their designs, in terms of how detail they are, in numbers serves as a better incentive for the students than words from the instructors.


Author(s):  
Ho Sik Kim ◽  
Hee Cheon No

Because of high marketability of SMR, although many countries are trying to develop SMR, the SMR market is not formed yet. For early dominance of SMR market, the SMR system should be fail-safe, simple and economical. In order to develop FAil-safe Simple Economical SMR (FASES) system we applied the design characteristics of HTGRs into water-cooled reactors. In this study, we performed conceptual design and feasibility study for the FASES system. The feasibility study is focused on a thermal-hydraulic aspect in normal operating conditions and several accident conditions. The key design characteristic of the FASES system obtained from design concepts is to have sufficient decay heat removal capability even in the accidents involving extended station blackout (SBO), failure of passive decay heat removal system (PDHRS), and failure of emergency core cooling system (ECCS). Based on the design concepts, we could define several thermal-hydraulic design requirements. Then, we performed thermal-hydraulic analysis for feasibility study and proposed the specific design of the FASES system satisfying several design requirements.


2007 ◽  
Vol 18-19 ◽  
pp. 389-396
Author(s):  
Samuel B. Adejuyigbe

In this paper the author used his personal experience having passed through all the facets of technological education specializing in Mechanical Engineering to solve the problem of noncontinuity of technological educational system. Critical Path Method (CPM) was used to develop a model for the continuity of Technological Education using Nigeria and Ghana as a case study. The paper completely eliminates the terminal certificates awarded in some Nigerian and Ghanaian Technological Institutions. Other educational lines like: Education, Art and Sciences were compared with that of Technological line and solutions were proffered to the identified problems.


Author(s):  
Fang-Fu Guo ◽  
Hong-Sen Yan ◽  
Chao-Chieh Lan ◽  
Shin-Tsung Huang

Various patents relating fixed center steering wheels are studied. The corresponding topological characteristics, design specifications, and design requirements and constraints of mechanisms are concluded. A methodology for the creative design of mechanisms is applied to generate all possible design concepts of mechanisms subjected to the concluded design requirements and constraints. In conclusion, 29 new design concepts of fixed center steering wheels are synthesized.


Sign in / Sign up

Export Citation Format

Share Document