Wear Behavior of Cr2O3/Cu Composite under Electrical Sliding

2010 ◽  
Vol 97-101 ◽  
pp. 861-866 ◽  
Author(s):  
Ke Xing Song ◽  
Xiu Hua Guo ◽  
Yong Peng Wang ◽  
Qing Wang

The Cr2O3/Cu composites with different Cr2O3-content performed in this paper were prepared by surface internal oxidation of Cu-Cr solid alloy. The Cr2O3/Cu composite wires were slid against a copper-based powder metallurgy strip under unlubricated conditions. The wear behavior of Cr2O3/Cu composite was researched under different currents from 0-50A and sliding distance from 0-72Km. Worn surfaces of the Cr2O3/Cu composite were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of Cr2O3/Cu composite increases with the increase in electrical current and sliding distance. The wear rate increases abruptly at the beginning and smoothly subsequently. And the variety of electrical currents has slight influence on the wear rate. The wear rate of the Cr2O3/Cu composites decreases with the increase in Cr2O3-content. The wear rate of 0.478 Cr2O3/Cu composite is 2-3 times that of 1.25Cr2O3/Cu composite at the same experimental conditions. Abrasive wear and electrical erosion wear are the dominant wear mechanisms during the electrical sliding wear processes.

2010 ◽  
Vol 97-101 ◽  
pp. 717-723 ◽  
Author(s):  
Xiu Hua Guo ◽  
Ke Xing Song ◽  
Shu Hua Liang ◽  
Qing Wang ◽  
Yong Peng Wang

The nano-Al2O3p/Cu composite performed in this paper was prepared by internal oxidation. The nano-Al2O3p/Cu composite wire and the Cu-Ag alloy wire were slid against a copper-based powder metallurgy strip under unlubricated conditions. The wear behavior of nano-Al2O3p/Cu composite and Cu-Ag alloy were researched under different currents from 0~50A and sliding distance from 0~72Km. Worn surfaces of the nano-Al2O3p/Cu composite were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the nano-Al2O3p/Cu composite surface is dispersed with Al2O3 particles having a size of 10~20nm; the wear rate of both 0.60Al2O3p/Cu (containing 0.60wt.% Al2O3) composite and Cu-Ag alloy increases with the increasing electrical current and sliding distance, which increases abruptly at the beginning and smoothly subsequently; The wear rate of Cu-Ag alloy is 2-5 times that of 0.60Al2O3p/Cu composite without electrical current; The wear rate of Cu-Ag alloy is 5-10 times that of 0.60Al2O3p/Cu composite with electrical current of 30A-50A; The sensitivity of electrical current on the Cu-Ag alloy is more apparently than that on 0.60Al2O3p/Cu composite. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


2009 ◽  
Vol 423 ◽  
pp. 125-130 ◽  
Author(s):  
Alvaro Mestra ◽  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

Duplex stainless steels contain similar amounts of austenite  and ferrite α. This two-phase microstructure leads to an excellent combination of mechanical properties and corrosion resistance. However, there are few works dealing with the wear behaviour of these steels. This paper aims to determine the sliding wear mechanisms of a duplex stainless steel type 2205. In order to do it, three different sliding velocities (0.2, 0.7 and 1.2 m/s) and six sliding distances (500, 1000, 2000, 3000, 4000 and 5000 m) were selected. The results show that wear rate depends on both sliding velocity and sliding distance. The wear mechanisms detected were plowing, microcracking and microcutting (typical mechanisms of fatigue wear). These mechanisms evolve according to sliding velocity and sliding distance, highlighting a transition zone in which wear rate is reduced.


1999 ◽  
Vol 122 (1) ◽  
pp. 288-292 ◽  
Author(s):  
Hidekazu Kohira ◽  
F. E. Talke

The wear behavior of diamond-like carbon (DLC) coated sliders for proximity recording is investigated as a function of sliding distance, spindle speed and slider “interference height” using Raman spectroscopy. Both constant speed drag tests simulating track following and “slew” tests simulating track seeking were performed. The results indicate that track seeking increases the wear rate of DLC coated sliders dramatically during the first stages of a seek test. The results also show that wear of the DLC layer depends strongly on sliding distance and interference height of the slider. [S0742-4787(00)03801-7]


2021 ◽  
Vol 49 (2) ◽  
pp. 414-421
Author(s):  
Manjunath Naik ◽  
L.H. Manjunath ◽  
Vishwanath Koti ◽  
Avinash Lakshmikanthan ◽  
Praveennath Koppad ◽  
...  

Graphene and carbon nanotubes are two carbon based materials known for their unique wear and friction properties. It would be quite interesting to understand the wear behavior of aluminium hybrid composites when these two nanosize reinforcements are incorporated into it. The hybrid composites with varying weight fractions of graphene (1, 2, 3 and 5 wt.%) and fixed CNT content of 2 wt.% were produced using powder metallurgy technique. The effect of varying graphene content on hardness and sliding wear of hybrid composites was studied. The wear tests were done as per ASTM G-99 standard with fixed sliding velocity (2 m/s) and sliding distance (1200 m) but varying applied load (10 - 30 N). Worn surface analysis was conducted using scanning electron microscope to arrive at wear mechanisms responsible for wear of aluminium and its hybrid composites. Increase in graphene content led to increase in bulk hardness with highest value of 61 RHN for hybrid composite with 3 wt.% graphene content. The wear rate of hybrid composites was found to be decreasing with enhancement in graphene content. Lower wear rate in hybrid composites was due to the formation of lubricating layer on the worn surface.


The main aim of this article deals with the wear behavior of mechanically alloyed 17-Cr oxide dispersion strengthened (ODS) Ferritic steel consolidated through Vacuum Hot Pressing (VHP) at temperature level of 1170 °C under pressure level of 60 MPa with 60 minutes as holding time and with rate of cooling of 50 ˚C /min and a vacuum level of 10-3 torr. The persuade of wear process parameters were investigated based on the load applied, sliding velocity and sliding distance at a temperature of 350°C on dry sliding track of 17-Cr Ferritic oxide dispersion strengthened steel (Fe-17Cr-0.35Y2O3 -1.5ZrO2 -4Al (%wt). Wear test was conducted in a dry atmosphere using a pinon-disc wear testing machine. Wear behavior of 17-Cr Ferritic ODS steel was analyzed by using Taguchi approach. To examine the process parameter during high temperature wear rate analysis of variance and signal to noise ratios were used. During the wear analysis sliding distance was found to be influential parameters of wear rate for 17-Cr Ferritic oxide dispersion strengthened steel succeeded by functional load and sliding velocity. The regression model was found to calculate the rate of wear for 17-Cr Ferritic oxide dispersion strengthened steel.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
R. Nithesh ◽  
N. Radhika ◽  
S. Shiam Sunder

The modern technology developments have seeded for the necessity of composite materials that are incorporated with high hardness, high tensile strength, and better wear properties. Cu–Sn–Ni alloy as well as the composites of varying weight percentage of Si3N4 (5, 10, and 15) are fabricated by liquid metallurgy technique. The alloy and composites are tested for their tensile strength and hardness on Universal Testing Machine and Vickers microhardness tester, respectively. Based on the tests, Cu–Sn–Ni/10 wt. % of Si3N4 is found to have optimum mechanical properties. The scuff type adhesive wear behavior is studied through pin-on-disk tribometer under dry sliding conditions for Cu–Sn–Ni/10 wt. % of Si3N4 composite. Taguchi's design of experiments technique based on L27 orthogonal array model is used for analyses of process parameters in three levels such as applied load (10, 20, and 30 N), sliding distance (500, 1000, and 1500 m), and sliding velocity (1, 2, and 3 m/s). The parameters are ranked based on the signal-to-noise ratio and the analysis of variance approach. Based on wear results, applied load is found to have highest stature on influencing wear rate followed by sliding distance and sliding velocity. A generalized wear rate equation is obtained based on the linear regression model and its feasibility is checked. Scanning electron microscope (SEM) analyses revealed severe delamination occurred on maximum load condition. The development of this copper composite can have the possibility of replacing aluminum bearings.


2019 ◽  
Vol 71 (6) ◽  
pp. 842-850
Author(s):  
Peter Prakash F. ◽  
Muthukannan Duraiselvam ◽  
Natarajan S. ◽  
Kannan Ganesa Balamurugan

Purpose This paper aims to investigate the effect of laser surface texturing (LST) on the wear behavior of C-263 nickel-based superalloy and to identify the optimum wear operating condition. Design/methodology/approach C-263 nickel-based superalloy was selected as substrate material and pico-second Nd-YAG laser was used to fabricate the waviness groove texture on their surface. Wear experiments were designed based on Box-Bhenken design with three factors of sliding velocity, sliding distance and applied load. Wear experiments were performed using pin on disc tribometer. Morphologies of textures and worn-out surfaces were evaluated by scanning electron microscopy and energy dispersive spectroscopy. Surface topographies and surface roughness of the textures were evaluated by weight light interferometry. The response surface methodology was adopted to identify the optimum wear operating condition and ANOVA to identify the significant factors. Findings LST improves the wear resistance of C-263 nickel-based superalloy by appeoximately 82 per cent. Higher wear rate occurs at maximum values of all operating conditions, and applied load affects the coefficient of friction. Applied load significantly affects the wear rate of un-textured specimen. The interaction of sliding velocity and applied load also affects the wear rate of textured specimens. The optimum parameters to get minimum wear rate for un-textured specimens are 1.5 m/s sliding velocity, 725 m sliding distance and 31 N of applied load. For textured specimens, the optimum values are 1.5 m/s sliding distance, 500 m sliding distance and 40 N of the applied load. Originality/value Literature on laser texturing on nickel-based superalloy is very scarce. Specifically, the effect of laser texturing on wear behavior of the nickel-based superalloy C-263 alloy is not yet reported.


2021 ◽  
Vol 13 (4) ◽  
pp. 139-150
Author(s):  
P. MUTHU

Dry sliding wear plays an important role in selecting material for automotive and aerospace applications. Researchers have been exploring novel aluminum matrix composites (AMC), which offer minimum wear rate for various tribological applications. The present work involves multi-objective optimization for dry sliding wear behavior of Al6061 reinforced with 6 % of Titanium carbide and 4% of basalt hybrid metal matrix composites using principal component analysis (PCA)-based grey relational analysis (GRA). In this article, the effects of input variables of wear parameters such as applied load, sliding speed and sliding distance were investigated on different output responses, namely the wear rate, friction force and specific wear rate. Taguchi’s L9 orthogonal array with three-level settings was chosen for conducting experiments. Three output responses in each experiment were normalized into a weighted grey relational grade using grey relational analysis coupled with the principal component analysis. The analysis of variance indicated that sliding distance is the most influential parameter followed by load and sliding velocity that contributes to the quality characteristics. Optimal results have been verified through additional experiments.


Sign in / Sign up

Export Citation Format

Share Document