Experimental Study of Dynamic Resilient Modulus of Cohesive Soils in Henan

2014 ◽  
Vol 971-973 ◽  
pp. 2092-2095
Author(s):  
Yu Peng Wang ◽  
Liang Zhou

Subgrade soil is very important materials to support highways. Resilient modulus (MR) has been used for characterizing stress-strain behavior of base or subbase subjected to repeated traffic loadings. Several methods to estimate the resilient modulus were suggested in the past years. The main objective of this study was to test the resilient modulus in the laboratory. The Subgrade soil was selected in Henan province. Resilient modulus tests were conducted with UTM. Additional analysis was performed to discuss the factors of the test results.

2005 ◽  
Vol 42 (2) ◽  
pp. 459-474 ◽  
Author(s):  
Marika Santagata ◽  
John T Germaine

The paper presents the results of an experimental investigation of sampling disturbance in cohesive soils through single-element triaxial tests on resedimented Boston blue clay (RBBC). The first part of the paper discusses the effect of the overconsolidation ratio (OCR) (1–8) of the soil on postdisturbance compression and undrained shear behavior. The results demonstrate that sensitivity to disturbance decreases markedly with OCR. It is also found that for the medium-sensitivity soil tested, the estimate of the preconsolidation pressure is not significantly affected by OCR. The second part of the paper discusses laboratory reconsolidation procedures. For OCR1 RBBC, the recompression method is not effective in recovering the stress–strain behavior of the soil and, for greater disturbance, provides an increasingly unsafe estimate of the strength. For OCR4, provided the reconsolidation path reproduces the path that occurred in the field, this procedure succeeds in recovering the intact stress–strain–strength behavior of the soil. SHANSEP reconsolidation was investigated for normally consolidated RBBC only. For modest levels of disturbance, this is an effective means of evaluating both the stress–strain and the strength behavior of the soil. For greater levels of disturbance, the stress–strain behavior is not fully recovered, but the method continues to provide conservative estimates of the undrained strength.Key words: sampling disturbance, clays, overconsolidation ratio, undrained strength, recompression, SHANSEP.


2014 ◽  
Vol 584-586 ◽  
pp. 1192-1196
Author(s):  
Xiao Wen Liu ◽  
Xiao Yan Chen

Through lots of triaxial and a single-line wetting path experiments for slaking deformation of the remolded laterite , behaviors of stress-strain and volumetric strain-axial strain are studied at different level values of wetting stress.The test results indicate that the modulus of deformation and the strength of samples are reduced by wetting, that the value of wetting deformation is relation to the stress state and that the logarithmic relationship between wetting axial strain of the type of laterite and wetting stress levels meets . The test results obtained have an important reference value for actual projects in Jiangxi laterite area.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jikai Zhou ◽  
Pingping Qian ◽  
Xudong Chen

The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant’s size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li’s equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement.


Author(s):  
Ali Hemmati ◽  
Heydar Arab

Fly ash is a supplementary cement material using instead of Portland cement in concrete. Using this material concludes to less emission of greenhouse gas and less water demand of concrete. In this paper, an experimental investigation was carried out on compressive stress–strain behavior of three groups of concrete specimens with different water/cement ratios (0.45, 0.5 and 0.55), containing 0, 10, 20, 30 and 40 percent of fly ash (by weight), after subjecting to freezing and thawing cycles. 0, 45, 100 and 150 cycles of freezing and thawing were applied on these specimens according to ASTM C666 and the results presented. Numerical models for the stress–strain behavior of these frozen-thawed concrete were developed and compared with the available experimental data. Results show that the maximum compressive strength of these concrete specimens exposing cycles of freezing and thawing is gained by using about 10 % of fly ash. Moreover, there is a good agreement between the proposed models and test results and the difference is less than 5 %.


1999 ◽  
Vol 15 (4) ◽  
pp. 177-184
Author(s):  
Ming-Lou Liu

AbstractThe stress-strain relationship of the sand and asphalt concrete materials is one of the most important research subjects in the past, and many conctitutive laws for these materials have been proposed in the last two decades. In this study, the Vermeer plasticity model is modified and used to predict the behavior of the sand and asphalt concrete materials under different stress path conditions. The results show that the predictions and test results agree well under different stress path conditions. However, the orignal Vermeer model can not predict the stress-strain behavior of the asphalt concrete. Finally, the modified Vermeer plasticity model is incorporated with the pavement rutting model to predict the rut depth of pavement structure under traffic loadings.


Sign in / Sign up

Export Citation Format

Share Document