Analysis of Thickness Strain Prediction in Warm Deep Drawing of Ti-6Al-4V Alloy

2014 ◽  
Vol 980 ◽  
pp. 52-56
Author(s):  
Nitin Kotkunde ◽  
Aditya D. Deole ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

In this work, deep drawing experiments have been performed in order to study formability of Ti-6Al-4V alloy sheet at temperature ranging from room temperature to 4000C. It is found that below 1500C, formability of the material is very poor and above 1500C till 4000C, limiting draw ratio (LDR) is found to be 1.8 which is substantially lesser than other structural alloys such as austenitic stainless steels. In order to understand qualitative aspects of formability, thickness distribution of drawn cup has been evaluated experimentally over a temperature range of 1500C - 4000C. Additionally, Finite Element (FE) analysis is done using a commercially available code Dynaform version 5.6.1 with LS-Dyna version 971 solver. 3-Parameter Barlat yield model is used for FE analysis. Predicted thickness distribution using FE simulation is in good agreement with experimental results.

2015 ◽  
Vol 766-767 ◽  
pp. 974-981
Author(s):  
N. Ethiraj ◽  
P. Ganesh ◽  
V.S. Senthil Kumar

Warm deep drawing is a non-conventional deep drawing process which is performed by applying heat in the conventional deep drawing, at the same time keeping the blank below the recrystallization temperature. Austenitic stainless steels like AISI 304 are widely used in food and automotive industries. Most of the current research work in warm deep drawing has been focussing on experimental and numerical simulation only. In this work, a new methodology is proposed to calculate the thickness distribution of the warm deep drawn circular cup from AISI 304 stainless steel sheet of 1.0 mm thickness analytically at temperatures ranging from room temperature to 300°C. The results of the theoretical approach show a reasonably good correlation with the experimental results.


1997 ◽  
Vol 119 (3) ◽  
pp. 341-349 ◽  
Author(s):  
H. B. Shim ◽  
D. Y. Yang

Both cylindrical cup drawing and square cup drawing are analyzed using both membrane analysis and shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and anisotropy is used for the analysis of elastic-plastic non-steady deformation. The corresponding experiments are carried out to show the validity of the analysis. Comparisons are made in punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both methods of analysis show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agreement with the experiment. For the square cup deep drawing, both membrane and shell analysis show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.


2019 ◽  
Vol 793 ◽  
pp. 93-97 ◽  
Author(s):  
Hor Yin ◽  
Kazutaka Shirai ◽  
Wee Teo

This paper investigates the response of UHPC-concrete composite structural members using implicit and explicit finite element (FE) methods. Both methods were prepared and conducted individually for the FE analysis under static loading condition. Results of the implicit and explicit analysis were compared to experimental results conducted in previous study. Both the implicit and explicit methods showed similar overall response with fair accuracy compared with the experimental results. In addition, the effective plastic strain obtained from the FE simulation was in good agreement with the damage cracking pattern in the experiment.


2011 ◽  
Vol 239-242 ◽  
pp. 392-397
Author(s):  
Xue Feng Xu ◽  
Ning Li ◽  
Gao Chao Wang ◽  
Hong Bo Dong

A thermal-mechanical coupled analysis of superplastic differential temperature deep drawing (SDTDD) with the MARC finite element code is performed in this paper. Initial drawing blank of an AA5083 bracket was calculated and adjusted according to the simulation result. During the SDTDD simulation, the power-law constitutive model of AA5083 was established as function of temperature and implanted in software MARC through new complied subroutine. Under the guide of the numerical simulation, the die was fabricated and the AA5083 bracket was successfully manufactured via superplastic differential temperature deep drawing. In forming practice, the temperature of female die was kept at 525°C, i.e. the optimal superplastic temperature of AA5083, and the punch was cooled by the flowing water throughout the forming process. The drawing velocity of punch was 0.1mm/s. Results revealed that the formed bracket had a sound uniform thickness distribution. Good agreement was obtained between the formed thickness profiles and the predicted ones.


2013 ◽  
Vol 871 ◽  
pp. 211-214
Author(s):  
Takashi Katahira ◽  
Tetsuo Naka ◽  
Yasuhide Nakayama ◽  
Ryutaro Hino ◽  
Fusahito Yoshida

Square cup drawing experiments were performed on an AZ31 sheet at various temperatures (T) ranging from room temperature to 200°C with three different punch travel speeds (V) of 3, 30 and 300mm/min. From the experiment, the highest drawability was observed either at T=175°C with V= 30mm/min or at T=200°C with V= 300mm/min. The effects of temperature and forming speed on the formability were discussed by comparing the result of drawing experiment with the high temperature tensile properties of the material. The forming limits were well predicted by FE simulation using a temperature and rate dependent constitutive model.


2014 ◽  
Vol 626 ◽  
pp. 334-339
Author(s):  
Te Fu Huang ◽  
Hsin Yi Hsien ◽  
Yan Jia Chen

The friction holding effect and the friction reducing effect occurring during Hydraulic Deep Drawing and the pre-bulging resulting in more plastic deformation on products are applied on sheet hydro-forming. For Hydraulic Deep Drawing of a square cup, the thickness distribution and the relation between the height and the pressure of pre-bulging are simulated with SPCC steels as the specimen by the finite element method. An experimental apparatus of sheet hydro-forming has been constructed to carry out the hydraulic deep drawing experiments of square cups. Experimental thickness distribution and punch load are compared with simulation results. Good agreement was found. The flow patterns of the circular and square blanks with the condition of being firmly pressed against the punch observed from the experiments are in agreement with the predicted results.Keywords:Hydraulic Deep Drawing, sheet hydro-forming, finite element method


Author(s):  
M. R. Morovvati ◽  
B. Mollaei-Dariani ◽  
M. Haddadzadeh

The initial blank in the deep drawing process has a simple shape. After drawing, its perimeter shape becomes very complex. If the initial blank shape is designed in such a way that it is formed into the desired shape after the drawing process, not only does it reduces the time of trimming process but it also decreases the raw material needed substantially. In this paper, the genetically optimized neural network system (GONNS) is proposed as a tool to predict the initial blank shape for the desired final shape. Artificial neural networks (ANNs) represent the final blank shape after a training process and genetic algorithms find the optimum initial blank. The finite element method is employed for simulating the multilayer plate deep drawing process to provide training data for ANN. The GONNS results were verified through experiment in which the error was found to be about 0.2 mm. At last, variations of deformation force, thickness distribution, and thickness strain distribution were investigated using optimum blank. The results show 12% reduction in deformation force and more uniform thickness distribution as well as more consistent thickness strain distribution in the optimum blank shape.


2011 ◽  
Vol 105-107 ◽  
pp. 344-347
Author(s):  
Fung Huei Yeh ◽  
Ching Lun Li ◽  
Kun Nan Tsay

This paper presents an explicit dynamic finite element method (FEM) in conjunction with the forming limit diagram (FLD) to analyze the forming limit for the SPCC foil in micro deep drawing of square cup. In the present study, the tensile, anisotropic and friction test are performed to obtain the material parameters of the alloy foil according to the ASTM standards. Importing these properties, the numerical analysis is conducted by the explicit dynamic FEM. The FLD in numerical simulation is used as the criterion of the forming limit in micro deep drawing of the square cup. The forming limit, punch load-stroke relationship, deformed shape and thickness distribution of square cup, are discussed and compared with the experimental results. It shows that a good agreement is achieved from comparison between simulated and experimental results. The limit drawing ratio in micro deep drawing of square cup is 2.08 in this paper. From this investigation, the results of this paper can be used as reference in the relative researches and applications of micro forming.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Gaoshen Cai ◽  
Jubo Fu ◽  
Chuanyu Wu ◽  
Kangning Liu ◽  
Lihui Lang

To investigate and verify the degree to which the forming properties of low plasticity materials are improved at room temperature using the granular medium forming (GMF) process at 500 °C, a coupled Eulerian–Lagrangian unit calculation model was established and a special mold was designed to conduct a GMF experiment for titanium alloy sheets under different-shaped pressing blocks. Then, using a three-coordinate measuring machine, the sizes of the outer contours of the parts formed at room temperature were measured, and the results showed that the bottom of the parts maintained a smooth surface during the drawing process. As the drawing height increased, the radius of curvature of the cambered surface gradually decreased. By measuring the wall thickness of the parts at different positions from the central axis using a caliper, the wall thickness distribution curves of these parts were obtained, which showed that the deformations of the bottom of the formed parts were uniform and the uniformity of the wall thickness distribution was good. By comparing the GMF experimental data at 500 °C with traditional deep drawing experimental data, it was found that the GMF technology could improve the forming properties of low plastic materials such as titanium alloys.


2014 ◽  
Vol 611-612 ◽  
pp. 1013-1020
Author(s):  
Sepinood Torabzadeh Khorasani ◽  
Henry Valberg

The velocity and strain rate fields in the primary deformation zone ahead of the extrusion die opening are investigated by theory and FE-simulation for direct and indirect Al extrusion. The metal flow obtained in the FEM-models of extrusion is compared with the flow recorded in previous experiments and it is shown that the FE-analysis mimics real metal flow with good accuracy. The velocity and the strain rate fields computed by FEA (using DEFORM® 2D) are described and comparison is made with the idealized spherical velocity field of Avitzur, to see if there is good agreement between the results from theory and FEA, and the correlation between the results from the two is discussed. Moreover, a clear difference in metal flow is confirmed between the two processes direct (FwE) and indirect extrusion (BwE).


Sign in / Sign up

Export Citation Format

Share Document