A Method of Improving Limiting Drawing Ratio:Differential Temperature Deep Drawing Based on Superplasticity

2011 ◽  
Vol 239-242 ◽  
pp. 392-397
Author(s):  
Xue Feng Xu ◽  
Ning Li ◽  
Gao Chao Wang ◽  
Hong Bo Dong

A thermal-mechanical coupled analysis of superplastic differential temperature deep drawing (SDTDD) with the MARC finite element code is performed in this paper. Initial drawing blank of an AA5083 bracket was calculated and adjusted according to the simulation result. During the SDTDD simulation, the power-law constitutive model of AA5083 was established as function of temperature and implanted in software MARC through new complied subroutine. Under the guide of the numerical simulation, the die was fabricated and the AA5083 bracket was successfully manufactured via superplastic differential temperature deep drawing. In forming practice, the temperature of female die was kept at 525°C, i.e. the optimal superplastic temperature of AA5083, and the punch was cooled by the flowing water throughout the forming process. The drawing velocity of punch was 0.1mm/s. Results revealed that the formed bracket had a sound uniform thickness distribution. Good agreement was obtained between the formed thickness profiles and the predicted ones.

2011 ◽  
Vol 189-193 ◽  
pp. 88-91
Author(s):  
Jun Gao ◽  
Zhen Ming Yue ◽  
Shu Xia Lin

Magnesium alloys have been attracting much more attentions due to its low density, high specific strength and its lightweight during the past 30 years. In this paper, the deep drawing performance of AZ31B magnisium alloy sheets at elevated temperature was studied by the experimental approach. The results indicated that the formability of the AZ31B sheets at elevated temperatures could be improved significantly. The best external forming parameters can be obtained such as heating temperature of sheet, die-punch clearance, punch fillet radius, etc. Simulating the forming process by using the numerical simulation software, we investigated the stress-strain distribution, thickness distribution and forming limit, etc. The thickness distribution by the numerical simulation agrees well with the experimental results.


2014 ◽  
Vol 626 ◽  
pp. 334-339
Author(s):  
Te Fu Huang ◽  
Hsin Yi Hsien ◽  
Yan Jia Chen

The friction holding effect and the friction reducing effect occurring during Hydraulic Deep Drawing and the pre-bulging resulting in more plastic deformation on products are applied on sheet hydro-forming. For Hydraulic Deep Drawing of a square cup, the thickness distribution and the relation between the height and the pressure of pre-bulging are simulated with SPCC steels as the specimen by the finite element method. An experimental apparatus of sheet hydro-forming has been constructed to carry out the hydraulic deep drawing experiments of square cups. Experimental thickness distribution and punch load are compared with simulation results. Good agreement was found. The flow patterns of the circular and square blanks with the condition of being firmly pressed against the punch observed from the experiments are in agreement with the predicted results.Keywords:Hydraulic Deep Drawing, sheet hydro-forming, finite element method


Author(s):  
Guide Deng ◽  
Ping Xu ◽  
Jinyang Zheng ◽  
Yongjun Chen ◽  
Yongle Hu ◽  
...  

Determining blast loadings on an explosion containment vessel (ECV) is the foundation to design the ECV. Explosion of TNT centrally located in a thick-walled cylindrical vessel and its impact on the cylinder was simulated using the explicit finite element code LS-DYNA. Blast loadings on the cylinder computed are in good agreement with the corresponding experimental results. Then wall thickness and yield stress of the cylinder were changed in the following simulation to investigate effect of shell deformation on blast loadings. It is revealed that shell deformation during the primary pulses of blast loadings is so slight that it has little influence on the blast loadings. Though the deformation may increase greatly after the primary pulses, the dynamic response of an ECV is mainly affected by the primary pulses. Therefore, decoupled analyses are appropriate, in which the shell of an ECV is treated as a rigid wall when determining blast loadings on it.


2012 ◽  
Vol 735 ◽  
pp. 162-169 ◽  
Author(s):  
Gilles Marin ◽  
Fabien Nazaret ◽  
Olivier Barrau ◽  
Nicolas Guegan ◽  
Benoit Marguet ◽  
...  

The rear part of the APF A380 has a deep drawn shape. In order to develop the forming by SPF process of this part, numerical simulation by finite elements has been performed. Several configurations for 2D and 3D modeling were studied to determine an efficient forming strategy. A double-action solution was chosen. It ensures a satisfactory thickness distribution. This article will deal with the modeling assumptions, the results of individual cases of calculation and comparison with parts obtained at the Airbus plant.


2012 ◽  
Vol 246-247 ◽  
pp. 365-369
Author(s):  
Kang Chen ◽  
Cheng Yun Peng ◽  
Hui Liu

Drawing-bulging forming is a forming method both deep drawing forming and bulge forming, it has been studied in a centrifuge cover for instance. The forming processes of the centrifuge cover have been analyzed, and the convex hull forming of the forming processes is a typical drawing-bulging forming. The convex hull forming has been analyzed by the theoretical calculations and finite element numerical simulation. The results shows that the convex hull forming should be earlier than the box-shaped forming, in this case, material flow is more conducive to control. In order to avoid the rupture in the forming process of the convex hull, the convex hull forming can be divided into two steps to complete, it can reduce inward deformation resistance of the external metal, and increase the composition of the deep drawing in the drawing-bulging forming, and ease the thinning of the convex hull of the corresponding location. Finally, the reasonable process plan of the workpiece was determined.


2013 ◽  
Vol 554-557 ◽  
pp. 1290-1297 ◽  
Author(s):  
Selmi Naceur ◽  
Bel Hadj Salah Hedi

FINITE ELEMENT AND EXPERIMENTAL INVESTIGATIONS OF THE MULTI-POINT FLEXIBLE HYDOFORMING. N. Selmi*, H. BelHadjSalah* *Mechanical Engineering Laboratory (LGM), National Engineering School of Monastir (ENIM), University of Monastir, Avenue Ibn El Jazzar 5019, Monastir, Tunisia. [email protected], [email protected]. ABSTRACT Multi-point flexible forming (MPF) process is relatively recent flexible techniques [1], instead of the conventional fixed shape die sets, the basic idea in this process, consist to form the sheet metal between a pair of opposed matrices of punch elements, by adjusting the height of the punch elements [2]. Production of many parts with different geometry will be possible, just by using one same device and the need to design and manufacturing of various dies will be avoided that lead to great saving in time and manufacturing cost specially in the field of small batch or single production. The hydroforming process is attractive compared with conventional solid die forming processes, the basic idea consist to suppress one tool of two forming tools (punch or die), which is replaced by hydraulic pressure, only one tool is necessary to define the final shape of formed sheet. The multipoint flexible hydroforming, proposed in this paper, is an original process which combines the hydroforming and the multipoint flexible forming [3], to obtain a synergy of the advantages of both processes. The new process, subject of this work, is a combination of the last described processes that keep the whole flexibility of the basic multipoint flexible forming (with two dies), by using, only at one side, a single multipoint die to perform completely the final part shape, the fluid pressure is applied on the other side of the sheet metal part and substitutes advantageously the second die. Firstly, investigations were carried out by numerical simulation, to quantify, the effect of the most influent parameters on the process performances, and to highlight the ability of this new process, in the production of complex forms, as well as its contribution in quality, placed with regards existing flexible processes. Secondly, to prove the feasibility and to carry out a valuable experimental investigation of the multipoint flexible hydroforming, an experimental prototype was designed and realized, and successful doubly curved shell shape parts were obtained by the new process testing set up. The part profiles and the thickness distribution were in agreement with those obtained by numerical investigation furthermore, numerical investigation for efficient methods to suppress the dimpling phenomenon and edge buckling were confirmed by experimental investigation. From investigations it appears that the parameters attached to the discreet character of the multipoint tool, have an important effect on the quality of the final metal sheet product, such as, the punch elements density, the punch elements extremity curvature radius, the blank and the elastomeric interpolator thicknesses. From simulation results, it emerges essentially, that an adequate setting of parameters can upgrade the thickness distribution, reduce the residual stress and attenuate the dimples. References: [1] Zhong-Yi Cai, Shao-Hui Wanga, Ming-Zhe Li, (2008), Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and spring back, Int J Adv Manuf Technol (2008) 37:927–936. [2] Zhong-Yi Cai, Shao-Hui Wang, Xu-Dong Xu, Ming-Zhe Li (2009), Numerical simulation for the multi-point stretch forming process of sheet metal, journal of materials processing technology 209 (2009) 396–407. [3] N. Selmi, H. Bel hadj salah, Simulation numérique de l’hydroformage à matrice flexible, 7éme journées scientifiques en mécanique et matériaux JSTMM2010, Hammamet 26-27 novembre2010.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


2011 ◽  
Vol 301-303 ◽  
pp. 452-455 ◽  
Author(s):  
Yuji Kotani ◽  
Hisaki Watari ◽  
Akihiro Watanabe

The approach to total weight reduction has been a key issue for car manufacturers as they cope with more and more stringent requirements for fuel economy. In sheet metal forming, local increases in product-sheet thickness effectively contribute to reducing the total product weight. Products could be designed more efficiently if a designer could predict and control the thickness distribution of formed products. This paper describes a numerical simulation and evaluation of the material flow in local thickness increments of products formed by an ironing process. In order to clarify the mechanism of the local increase in sheet thickness, a 3-D numerical simulation of deep drawing and ironing was performed using finite-element simulation. The effects of various types of finite elements that primarily affect thickness changes in original materials and thickness prediction were investigated. It was found that the sheet-thickness distribution could be predicted if the original material was relatively thick and if an appropriate type of finite element is selected.


Sign in / Sign up

Export Citation Format

Share Document