Shale Reservoirs Multi-Fracture Fracturing Technique and Studies on Reservoirs Stresses

2014 ◽  
Vol 986-987 ◽  
pp. 779-785
Author(s):  
Guang Ming Zhang ◽  
Jian Dong Liu ◽  
Chun Ming Xiong ◽  
Lu He Shen ◽  
Juan Jin

Theoretical studies have shown that the generation of the hydraulic fractures reduces or even reverses the stress anisotropy near the fractures and results in increasing the complexity of fractures. A finite element model was established in which the pore pressure elements were used to simulate the behavior of porous media and the pore pressure cohesive elements were adopted to catch the characters of hydraulic fractures. A special fracturing manner was adopted to create complicated fracture networks by reducing or even reversing the stress anisotropy between fractures. The geometries of hydraulic fractures, strains, stresses, pore pressure distributions and fluid pressures within the fractures are obtained. The results of the model are fit well with the corresponding theoretical data. The simulation results show that the stress anisotropy is reduced by the generation of the hydraulic fractures, multiple parallel transverse fractures of horizontal well even reverse the stress anisotropy in some place of the reservoir. The simulation results validate the feasibility of the theoretical studies and the expected complex network fractures could be created by adopting special fracturing manner.

2013 ◽  
Vol 419 ◽  
pp. 10-16
Author(s):  
G.M. Zhang ◽  
J.D. Liu ◽  
C.M. Xiong ◽  
H. Liu ◽  
J. Jin

Theoretical studies have shown that the generation of hydraulic fractures reduces or even reverses the stress anisotropy between the fractures and results in increasing the complexity of fractures. A finite element model was established in which the pore pressure element was used to simulate the behavior of porous media and the pore pressure cohesive element was adopted to catch the characters of hydraulic fracture. A special fracturing manner was adopted to create complicated fracture networks by reducing or even reversing the stress anisotropy between fractures. The geometries of hydraulic fractures, strains, stresses, pore pressure distributions and fluid pressures within the fractures are obtained. The results of the model are fit well with the corresponding theoretical data. The simulation results show that the stress anisotropy is reduced resulting from the generation of the hydraulic fracture, multiple parallel transverse fractures of horizontal well further reduce or even reverse the stress anisotropy in some place of the reservoir. The simulation results validate the feasibility of the theoretical studies and the expected complex network fractures could be created by adopting the special fracturing manner.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaoxi Men ◽  
Jiren Li

A two-step fracturing method is proposed to investigate the hydraulic fracture evolution behavior and the process of complex fracture network formation under multiple wells. Simulations are conducted with Rock Failure Process Analysis code. Heterogeneity and permeability of the rocks are considered in this study. In Step 1, the influence of an asymmetric pressure gradient on the fracture evolution is simulated, and an artificial structural plane is formed. The simulation results reflect the macroscopic fracture evolution induced by mesoscopic failure; these results agree well with the characteristics of the experiments. Step 2, which is based on the first step, investigates the influence of preexisting fractures (i.e., artificial structural planes) on the subsequent fracturing behavior. The simulation results are supported by mechanics analysis. Results indicated that the fracture evolution is influenced by pressure magnitude on a local scale around the fracture tip and by the orientation and distribution of pore pressure on a global scale. The constant pressure in wellbore H2 can affect fracture propagation by changing the water flow direction, and the hydraulic fractures will propagate to the direction of higher local pore pressure. Furthermore, the artificial structural planes influence the stress distribution surrounding the wellbores and the hydraulic fracture evolution by altering the induced stresses around the preexisting fractures. Finally, fracture network is formed among the artificial structural planes and hydraulic fractures when multiple wells are fractured successively. This study provides valuable guidance to unconventional reservoir reconstruction designs.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2021 ◽  
Vol 11 (10) ◽  
pp. 4709
Author(s):  
Dacheng Huang ◽  
Jianrun Zhang

To explore the mechanical properties of the braided corrugated hose, the space curve parametric equation of the braided tube is deduced, specific to the structural features of the braided tube. On this basis, the equivalent braided tube model is proposed based on the same axial stiffness in order to improve the calculational efficiency. The geometric model and the Finite Element Model of the DN25 braided corrugated hose is established. The numerical simulation results are analyzed, and the distribution of the equivalent stress and frictional stress is discussed. The maximum equivalent stress of the braided corrugated hose occurs at the braided tube, with the value of 903MPa. The maximum equivalent stress of the bellows occurs at the area in contact with the braided tube, with the value of 314MPa. The maximum frictional stress between the bellows and the braided tube is 88.46MPa. The tensile experiment of the DN25 braided corrugated hose is performed. The simulation results are in good agreement with test data, with a maximum error of 9.4%, verifying the rationality of the model. The study is helpful to the research of the axial stiffness of the braided corrugated hose and provides the base for wear and life studies on the braided corrugated hose.


2015 ◽  
Vol 656-657 ◽  
pp. 694-699
Author(s):  
Xin Liao ◽  
Jian Run Zhang ◽  
Dong Lu

In this study, a non-linear finite element model for a simplified single-bolted joint structure model is built. Static analysis on the structure under different shear force and pretension effect is done, and the non-linear contact behavior is analyzed. Through comparing datum, it is found that interface area of each bolted joint region can be described an annular region around bolt hole, whose outer radius has increased by 85% compared with radius of bolt hole. Also, the frequency responses of the multi-bolted joint structure under sinusoidal excitation are investigated. Simulation results show that the resonance regions basically remain unchanged in different pretension effect and the largest amplitude will increase with the increasing preloads. Finally, the vibration experiments are conducted. Interface nonlinear affect dynamic stiffness considerably. The test results illustrate that dynamic behaviors of bolted joint agree with the simulation results and the proposed non-linear contact model was reasonable.


Author(s):  
Lý Hùng Anh ◽  
Nguyễn Phụ Thượng Lưu ◽  
Nguyễn Thiên Phú ◽  
Trần Đình Nhật

The experimental method used in a frontal crash of cars costs much time and expense. Therefore, numerical simulation in crashworthiness is widely applied in the world. The completed car models contain a lot of parts which provided complicated structure, especially the rear of car models do not contribute to behavior of frontal crash which usually evaluates injuries of pedestrian or motorcyclist. In order to save time and resources, a simplification of the car models for research simulations is essential with the goal of reducing approximately 50% of car model elements and nodes. This study aims to construct the finite element models of front structures of vehicle based on the original finite element models. Those new car models must be maintained important values such as mass and center of gravity position. By using condition boundaries, inertia moment is kept unchanged on new model. The original car models, which are provided by the National Crash Analysis Center (NCAC), validated by using results from experimental crash tests. The modified (simplistic) vehicle FE models are validated by comparing simulation results with experimental data and simulation results of the original vehicle finite element models. LS-Dyna software provides convenient tools and very strong to modify finite element model. There are six car models reconstructed in this research, including 1 Pick-up, 2 SUV and 3 Sedan. Because car models were not the main object to evaluate in a crash, energy and behavior of frontal part have the most important role. As a result, six simplified car models gave reasonable outcomes and reduced significantly the number of nodes and elements. Therefore, the simulation time is also reduced a lot. Simplified car models can be applied to the upcoming frontal simulations.


2019 ◽  
Vol 26 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Krzysztof Bronk ◽  
Patryk Koncicki ◽  
Adam Lipka ◽  
Dominik Rutkowski ◽  
Błażej Wereszko

Abstract In the paper, the measurement and simulation results of the VDES (VHF Data Exchange System) terrestrial component are discussed. It is anticipated that VDES will be one of the major solutions for maritime communications in the VHF band and its performance will be sufficient to fulfill the requirements of the e-navigation applications. The process of the VDES standardization (ITU R, IALA) has not been officially completed yet, but substantial amount of technical information about the future system’s terrestrial component (VDE-TER) is already available. The paper is divided into three general parts: (a) theoretical presentation of the system’s physical layer and the radio channels applicable to VDES, (b) simulation results (BER, BLER, channel delay between two propagation paths and its influence on bit rates) and (c) measurement results (useful ranges, BER). It turned out that in real maritime conditions, the VDES system can offer ranges between 25 and 38 km for the configurations assumed during the measurement campaign. Those results are generally compliant with the theoretical data in the line-of-sight conditions. In the NLOS scenarios, where fading becomes the dominant phenomenon, the discrepancies between the measurements and the theoretical results were more significant. The obtained results confirmed that VDES provides a large coding gain, which significantly improves the performance of data transmission and increases the bit rate compared to the existing maritime radiocommunication solutions. It should be noted that the results presented in the article were used by the IALA while developing the current version of the VDES specification.


2021 ◽  
Author(s):  
Erik Toller ◽  
Otto Strack

<p>Understanding and modelling hydraulic fractures and fracture networks have a fundamental role in mapping the mechanical behaviour of rocks. A problem arises in the discontinuous behaviour of the fractures and how to accurately and efficiently model this. We present a novel approach for modelling many cracks randomly using analytic elements placed under plane strain conditions in an elastic medium. The analytic elements allow us to model the assembly computationally efficiently and up to machine precision. The crack element is the first step in the development of a model suitable for investigating the effect of fissures on tunnels in rock. The model can be used to validate numerical models and more.The solution for a single hydraulic pressurized crack in an infinite domain in plane strain was initially developed by Griffith (1921). We demonstrate that it is possible, by using series expansions in terms of complex variables, based on the Muskhelisvili-Kolosov functions, to generalize this solution to the case of an assembly of non-intersecting pressurized cracks. The solution consists of infinite series for each element Strack & Toller (2020). The expressions for the displacements and stress tensor components approach the exact solution, as the number of terms in the series approaches infinity.We present the case where two cracks approach each other orthogonally to less than 1/2000th of the cracks length. We show the effect of increasing the number of terms in the expansion and how this influences the precision, demonstrating that the result approaches the exact solution. We also present a case with 10,000 cracks; the coefficients are determined using an iterative solver. By using analytic elements, we can both present the corresponding stress and deformations field for the global scale and for small scales in the close proximity of individual cracks.ReferencesGriffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582-593):163–198.Strack, O. D. L. and Toller, E. A. L. (2020). An analytic element model for highly fractured elastic media, manuscript submitted for publication in International Journal for Numerical and Analytical Methods in Geomechanics.</p>


2021 ◽  
Author(s):  
Sherif Fakher ◽  
Youssef Elgahawy ◽  
Hesham Abdelaal ◽  
Abdulmohsin Imqam

Abstract Carbon dioxide (CO2) injection in low permeability shale reservoirs has recently gained much attention due to the claims that it has a large recovery factor and can also be used in CO2 storage operations. This research investigates the different flow regimes that the CO2 will exhibit during its propagation through the fractures, micropores, and the nanopores in unconventional shale reservoirs to accurately evaluate the mechanism by which CO2 recovers oil from these reservoirs. One of the most widely used tools to distinguish between different flow regimes is the Knudsen Number. Initially, a mathematical analysis of the different flow regimes that can be observed in pore sizes ranging between 0.2 nanometer and more than 2 micrometers was undergone at different pressure and temperature conditions to distinguish between the different flow regimes that the CO2 will exhibit in the different pore sizes. Based on the results, several flow regime maps were conducted for different pore sizes. The pore sizes were grouped together in separate maps based on the flow regimes exhibited at different thermodynamic conditions. Based on the results, it was found that Knudsen diffusion dominated the flow regime in nanopores ranging between 0.2 nanometers, up to 1 nanometer. Pore sizes between 2 and 10 nanometers were dominated by both a transition flow, and slip flow. At 25 nanometer, and up to 100 nanometers, three flow regimes can be observed, including gas slippage flow, transition flow, and viscous flow. When the pore size reached 150 nanometers, Knudsen diffusion and transition flow disappeared, and the slippage and viscous flow regimes were dominant. At pore sizes above one micrometer, the flow was viscous for all thermodynamic conditions. This indicated that in the larger pore sizes the flow will be mainly viscous flow, which is usually modeled using Darcy's law, while in the extremely small pore sizes the dominating flow regime is Knudsen diffusion, which can be modeled using Knudsen's Diffusion law or in cases where surface diffusion is dominant, Fick's law of diffusion can be applied. The mechanism by which the CO2 improves recovery in unconventional shale reservoirs is not fully understood to this date, which is the main reason why this process has proven successful in some shale plays, and failed in others. This research studies the flow behavior of the CO2 in the different features that could be present in the shale reservoir to illustrate the mechanism by which oil recovery can be increased.


Author(s):  
Magda Foti ◽  
Manolis Vavalis

This paper has two aims. Firstly, to briefly present overall objectives and expected outcome of an on-going effort concerning design, implementation and the analysis of next generation energy systems based on anticipatory control and a set of ICT emerging technologies and innovations. Secondly, to describe an early proof-of-concept implementation and the associated experimentation of a simulation platform focused on holistic detailed studies of electric energy markets. The proposed platform allows us to elucidate issues related to the open and smart participation of producers and consumers on large-scale e-markets. Based on an existing simulation system, the authors present the required theoretical studies, the enabling technologies, and the practical tools that contribute to the development of such a platform capable of truly large scale simulations. Elements of game theory are utilized to solve the optimization problem related to the maximization of the social welfare of producers and consumers. Selected simulation results associated with the basic required characteristics are presented.


Sign in / Sign up

Export Citation Format

Share Document