scholarly journals Residual Stresses of the As-Cast Mg-xCa Alloys with Hot Sprues by Neutron Diffraction

2014 ◽  
Vol 996 ◽  
pp. 592-597
Author(s):  
Jiang Feng Song ◽  
Yuan Ding Huang ◽  
Karl Ulrich Kainer ◽  
Wei Min Gan ◽  
Norbert Hort

Residual stresses in Mg-xCa (0.5 wt. % and 1.0 wt. %) cast alloys were investigated by neutron diffraction using a mould with two preheating temperatures of 250 °C and 450 °C. Results show that the increase of Ca content decreases the residual stress in the hot sprue region. These results are quite in agreement with those obtained by the measurement of hot tearing susceptibility, which shows the increment in Ca content improves the castability of Mg-Ca alloys.

2013 ◽  
Vol 768-769 ◽  
pp. 428-432
Author(s):  
Wei Min Gan ◽  
Yuan Ding Huang ◽  
Zhi Wang ◽  
Norbert Hort ◽  
Michael Hofmann

Residual strains near the sprues of ingots with different contents of Zn (6 wt. % and 9 wt. %) were measured using neutron diffraction. The results showed that the increase of Zn content decreases the residual stress in the hot sprue region. These results are good in agreement with that obtained by the measurement of hot tearing susceptibility.


2008 ◽  
Vol 59 ◽  
pp. 299-303
Author(s):  
K. Mergia ◽  
Marco Grattarola ◽  
S. Messoloras ◽  
Carlo Gualco ◽  
Michael Hofmann

In plasma facing components (PFC) for nuclear fusion reactors tungsten or carbon based tiles need to be cooled through a heat sink. The joint between the PFC and the heat sink can be realized using a brazing process through the employment of compliant layer of either a low yield material, like copper, or a high yield material, like molybdenum. Experimental verification of the induced stresses during the brazing process is of vital importance. Strains and residual stresses have been measured in Mo/CuCrZr brazed tiles using neutron diffraction. The strains and stresses were measured in Mo tile along the weld direction and at different distances from it. The experimental results are compared with Finite Element Simulations.


2008 ◽  
Vol 571-572 ◽  
pp. 327-332 ◽  
Author(s):  
Jesus Ruiz-Hervias ◽  
Giovanni Bruno ◽  
Jonas Gurauskis ◽  
A.J. Sanchez-Herencia ◽  
C. Baudin

Residual stress profiles were measured by neutron diffraction in Al2O3/Y-TZP ceramic composites containing 5 and 40 vol.% Y-TZP fabricated by conventional slip casting and by a novel tape casting route. Residual stresses in the zirconia are tensile and increase as its volume fraction decreases. For the alumina matrix, residual stress is compressive and increases with the zirconia volume fraction. In the composite with 5 vol.% zirconia, the processing route does not have an influence on residual stresses. However, in the composite with 40 vol.% zirconia, residual stresses are different in the samples obtained by both processing routes.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1298
Author(s):  
Shuyan Zhang ◽  
Zhuozhi Fan ◽  
Jun Li ◽  
Shuwen Wen ◽  
Sanjooram Paddea ◽  
...  

In this study, a mock-up of a nuclear safe-end dissimilar metal weld (DMW) joint (SA508-3/316L) was manufactured. The manufacturing process involved cladding and buttering of the ferritic steel tube (SA508-3). It was then subjected to a stress relief heat treatment before being girth welded together with the stainless steel tube (316L). The finished mock-up was subsequently machined to its final dimension. The weld residual stresses were thoroughly characterised using neutron diffraction and the contour method. A detailed finite element (FE) modelling exercise was also carried out for the prediction of the weld residual stresses resulting from the manufacturing processes of the DMW joint. Both the experimental and numerical results showed high levels of tensile residual stresses predominantly in the hoop direction of the weld joint in its final machined condition, tending towards the OD surface. The maximum hoop residual stress determined by the contour method was 500 MPa, which compared very well with the FE prediction of 467.7 Mpa. Along the neutron scan line at the OD subsurface across the weld joint, both the contour method and the FE modelling gave maximum hoop residual stress near the weld fusion line on the 316L side at 388.2 and 453.2 Mpa respectively, whereas the neutron diffraction measured a similar value of 480.6 Mpa in the buttering zone near the SA508-3 side. The results of this research thus demonstrated the reasonable consistency of the three techniques employed in revealing the level and distribution of the residual stresses in the DMW joint for nuclear applications.


1997 ◽  
Vol 119 (2) ◽  
pp. 137-141 ◽  
Author(s):  
J. H. Root ◽  
C. E. Coleman ◽  
J. W. Bowden ◽  
M. Hayashi

Three-dimensional scans of residual stress within intact weldments provide insight into the consequences of various welding techniques and stress-relieving procedures. The neutron diffraction method for nondestructive evaluation of residual stresses has been applied to a circumferential weld in a ferritic steel pipe of outer diameter 114 mm and thickness 8.6 mm. The maximum tensile stresses, 250 MPa in the hoop direction, are found at mid-thickness of the fusion zone. The residual stresses approach zero within 20 mm from the weld center. The residual stresses caused by welding zirconium alloy components are partially to blame for failures due to delayed hydride cracking. Neutron diffraction measurements in a GTA-welded Zr-2.5Nb plate have shown that heat treatment at 530°C for 1 h reduces the longitudinal residual strain by 60 percent. Neutron diffraction has also been used to scan the residual stresses near circumferential electron beam welds in irradiated and unirradiated Zr-2.5Nb pressure tubes. The residual stresses due to electron beam welding appear to be lower than 130 MPa, even in the as-welded state. No significant changes occur in the residual stress pattern of the electron-beam welded tube, during a prolonged exposure to thermal neutrons and the temperatures typical of an operating nuclear reactor.


2017 ◽  
Vol 905 ◽  
pp. 31-39 ◽  
Author(s):  
Jeremy S. Robinson ◽  
Christopher E. Truman ◽  
Thilo Pirling ◽  
Tobias Panzner

The residual stresses in heat treated 7075 aluminium alloy blocks have been characterised using two neutron diffraction strain scanning instruments. The influence of uniaxial cold compression (1-10%) on relieving the residual stress has been determined. Increasing the magnitude of cold compression from 1 to 10% has been shown to have a beneficial effect on the residual stress distribution by reducing the range between the maximum and minimum residual stresses. The effect of over aging 7075 on residual stress has also been characterised using neutron diffraction and this was found to reduce the residual stress by 25-40%. A relationship between {311} peaks widths and amount of cold compression was also observed.


2003 ◽  
Vol 38 (4) ◽  
pp. 349-365 ◽  
Author(s):  
R. C Wimpory ◽  
P. S May ◽  
N. P O'Dowd ◽  
G. A Webster ◽  
D J Smith ◽  
...  

Tensile welding residual stresses can, in combination with operating stresses, lead to premature failure of components by fatigue and/or fracture. It is therefore important that welding residual stresses are accounted for in design and assessment of engineering components and structures. In this work residual stress distributions, obtained from measurements on a number of ferritic steel T-plate weldments using the neutron diffraction technique and the deep-hole drilling method, are presented. It has been found that the residual stress distributions for three different plate sizes are of similar shape when distances are normalized by plate thickness. It has also been found that the conservatisms in residual stress profiles recommended in current fracture mechanics-based safety assessment procedures can be significant—of yield strength magnitude in certain cases. Based on the data presented here a new, less-conservative transverse residual stress upper bound distribution is proposed for the T-plate weldment geometry. The extent of the plastic zone developed during the welding process has also been estimated by use of Vickers hardness and neutron diffraction measurements. It has been found that the measured plastic zone sizes are considerably smaller than those predicted by existing methods. The implications of the use of the plastic zone size as an indicator of the residual stress distributions are discussed.


2017 ◽  
Vol 905 ◽  
pp. 131-136
Author(s):  
Bruno Levieil ◽  
Florent Bridier ◽  
Cédric Doudard ◽  
Vincent Klosek ◽  
David Thévenet ◽  
...  

This study is an experimental comparison of in-depth X-ray diffraction residual stress measurements with neutron diffraction measurements. The goal is to evaluate the relevance of the Savaria-Bridier-Bocher [1] stress relaxation correction method. Neutron diffraction are performed on a bent notched specimen. Destructive X-ray diffraction is performed until 5.25mm below the surface by polishing the material. This polishing induces stress relaxation and X-ray diffraction results have to be corrected. For that purpose, a finite element analysis is realised and show good correlation with neutron measurements results. The application of the stress correction method improves the X-ray measurements especially after 2 mm below the surface. The differences between measured and corrected residual stresses from both diffraction techniques are analyzed and discussed.


Author(s):  
Lynann Clapham ◽  
Vijay Babbar ◽  
Thomas Gnaeupel-Herold ◽  
Remi Batisse ◽  
Mures Zarea

The residual stress pattern surrounding gouges is complex and, to date, has not been accurately modeled using stress modeling software. Thus measurement of these stress distributions is necessary. Neutron diffraction is the only experimental method with the capability of directly evaluating residual strain throughout the entire thickness of a pipe wall, in and around dent or gouged regions. Neutron diffraction measurements were conducted at the NIST reactor on three gouged dents in X52 pipeline sections. These were part of a larger sample set examined as part of the comprehensive MD4-1 PRCI/DOT PHMSA project. Gouges contained in pipeline sections were termed BEA161 (primarily a gouge with little denting), and BEA178 (mild gouging, very large dent). Measurements were also conducted on a coupon sample – P22, that was created as part of an earlier study. For the moderate gouges with little or no associated denting (BEA161 and P22) the residual stress field was highly localized around the immediate gouge vicinity (except where there was some denting present). The through wall stress distributions were similar at most locations — characterized by neutral or moderate hoop and axial stresses (50–100MPa) at the outer wall surface (i.e. at the gouge itself) gradually becoming highly compressive (up to −600MPa) at the inner wall surface. The other sample (BEA178) exhibited a very mild gouge with significant denting, and the results were very different. The denting process associated with this kind of gouge+dent dominated the residual stresses, making the residual stress distribution very complex. In addition, rather than having a residual stress field that is localized in the immediate gouge vicinity, the varying stress distribution extends to the edge of the dented region..


Sign in / Sign up

Export Citation Format

Share Document