Essay on Techniques & Physics of Some Diffusion-Controlled Processes in Materials: Relevance to Nanofabrication Applications

2009 ◽  
Vol 289-292 ◽  
pp. 679-686 ◽  
Author(s):  
Yuriy S. Nechaev ◽  
Andreas Öchsner

An annotated analytical essay of possible nanofabrication and nanotechnology applications is presented with respect to: (1) some techniques and original results [1-4] concerning the regularities and micromechanisms (physics) of the hydrogen fluoride gas activator influence on the diffusion-controlled oxidation processes of titanium, zirconium and zirconium-based alloys with niobium, and also – on nitriding, boriding and carbiding a series of refractory metals (Ti, Zr, Nb, Mo, W, Ta); (2) some techniques, original results and physics of the diffusion-controlled formation processes of the compound-like nanosegregation [5-13] and the results [13-23] on the liquid-like phase at grain boundary regions in metals and alloys. In the scope of this review, a constructive analysis, the Arrhenius-type treatment, and the original data interpretation [16-21] has been carried out for the first time; (3) some techniques, original analytical results, and physics [24, 25] of the diffusion-controlled processes of the hydrogen multilayer intercalation (physisorption of a condensation or clustering type) with carbonaceous nanostructures. The main objective of the given analytical essay is to attract the researchers’ attention to the expediency of such a non-conventional data analysis and interpretation.

2020 ◽  
Vol 81 (6) ◽  
pp. 90-96
Author(s):  
E. V. Arutiunova ◽  
E. V. Beshenkova ◽  
O. E. Ivanova

The study investigates the rule of spelling the root -ravn-/-rovn- and is considered to be a fragment of the academic description of Russian spelling, which is currently being under investigation at the Russian Language Institute of the Russian Academy of Sciences. The authors clarify the meanings that determine the spelling of the unstressed root, supplement the lists of exceptions, denote words with meanings not corresponding to the given values-criteria, and, for the first time in linguistics, investigate the words that can be correlated with different values-criteria, that is, they have double motivation. The rule codifies the spelling of words that have double motivation and fluctuate in usus, dictionaries, study guides and reference books. Spelling recommendations for these words correspond to the current linguistic norm and were approved by the Spelling Commission of the Russian Academy of Sciences in 2019. The linguistic commentary to the rule contains the most significant etymological facts concerning the root -ravn-/-rovn- and summarises the scientific and methodological attempts to figure out the distribution of vocabulary with root -ravn-/-rovn- based on the meanings selected in the spelling rules. In the paper it is shown that the instability in spelling of various verbs with the root -ravn-/-rovn- in modern writing and dictionaries is determined by the double motivation of words, as well as contradictory recommendations and gaps in the rules.


Author(s):  
Sajal Biring

Abstract The FinFET has been introduced in the last decade to provide better transistor performance as the device size shrinks. The performance of FinFET is highly sensitive to the size and shape of the fin, which needs to be optimized with tighter control. Manual measurement of nano-scale features on TEM images of FinFET is not only a time consuming and tedious task, but also prone to error owing to visual judgment. Here, an auto-metrology approach is presented to extract the measured values with higher precision and accuracy so that the uncertainty in the manual measurement can be minimized. Firstly, a FinFET TEM image is processed through an edge detecting algorithm to reveal the fin profile precisely. Finally, an algorithm is utilized to calculate out the required geometrical data relevant to the FinFET parameters and summarizes them to a table or plots a graph based on the purpose of data interpretation. This auto-metrology approach is expected to be adopted by academia and/or industry for proper data analysis and interpretation with higher precision and efficiency.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


Author(s):  
Ying Wang ◽  
Yiding Liu ◽  
Minna Xia

Big data is featured by multiple sources and heterogeneity. Based on the big data platform of Hadoop and spark, a hybrid analysis on forest fire is built in this study. This platform combines the big data analysis and processing technology, and learns from the research results of different technical fields, such as forest fire monitoring. In this system, HDFS of Hadoop is used to store all kinds of data, spark module is used to provide various big data analysis methods, and visualization tools are used to realize the visualization of analysis results, such as Echarts, ArcGIS and unity3d. Finally, an experiment for forest fire point detection is designed so as to corroborate the feasibility and effectiveness, and provide some meaningful guidance for the follow-up research and the establishment of forest fire monitoring and visualized early warning big data platform. However, there are two shortcomings in this experiment: more data types should be selected. At the same time, if the original data can be converted to XML format, the compatibility is better. It is expected that the above problems can be solved in the follow-up research.


Author(s):  
Carlos R Argüelles ◽  
Manuel I Díaz ◽  
Andreas Krut ◽  
Rafael Yunis

Abstract The formation and stability of collisionless self-gravitating systems is a long standing problem, which dates back to the work of D. Lynden-Bell on violent relaxation, and extends to the issue of virialization of dark matter (DM) halos. An important prediction of such a relaxation process is that spherical equilibrium states can be described by a Fermi-Dirac phase-space distribution, when the extremization of a coarse-grained entropy is reached. In the case of DM fermions, the most general solution develops a degenerate compact core surrounded by a diluted halo. As shown recently, the latter is able to explain the galaxy rotation curves while the DM core can mimic the central black hole. A yet open problem is whether this kind of astrophysical core-halo configurations can form at all, and if they remain stable within cosmological timescales. We assess these issues by performing a thermodynamic stability analysis in the microcanonical ensemble for solutions with given particle number at halo virialization in a cosmological framework. For the first time we demonstrate that the above core-halo DM profiles are stable (i.e. maxima of entropy) and extremely long lived. We find the existence of a critical point at the onset of instability of the core-halo solutions, where the fermion-core collapses towards a supermassive black hole. For particle masses in the keV range, the core-collapse can only occur for Mvir ≳ E9M⊙ starting at zvir ≈ 10 in the given cosmological framework. Our results prove that DM halos with a core-halo morphology are a very plausible outcome within nonlinear stages of structure formation.


2011 ◽  
Vol 76 (9) ◽  
pp. 1133-1139 ◽  
Author(s):  
Pham Thi Nhat Trinh ◽  
Nguyen Cong Hao ◽  
Phan Thanh Thao ◽  
Le Tien Dung

From the ethanol extract of Drynaria fortunei (KUNZE) J. Sm., a new phenylpropanoid glycoside, fortunamide (1), was isolated and characterized by spectroscopic methods. Together with a new glycoside, 9 known compounds, including three curcuminoids (2–4), two isoprenylated flavonoids (5, 6), two flavonoids (7, 8), one monoterpenoid (9) and one phenolic acid (10) were isolated and identified by spectral data analysis from the rhizomes of Drynaria fortunei (KUNZE) J. Sm. Eight of them were isolated from Drynaria fortunei (KUNZE) J. Sm. for the first time.


2021 ◽  
Author(s):  
Donglin Zhu ◽  
Lei Li ◽  
Rui Guo ◽  
Shifan Zhan

Abstract Fault detection is an important, but time-consuming task in seismic data interpretation. Traditionally, seismic attributes, such as coherency (Marfurt et al., 1998) and curvature (Al-Dossary et al., 2006) are used to detect faults. Recently, machine learning methods, such as convolution neural networks (CNNs) are used to detect faults, by applying various semantic segmentation algorithms to the seismic data (Wu et al., 2019). The most used algorithm is U-Net (Ronneberger et al., 2015), which can accurately and efficiently provide probability maps of faults. However, probabilities of faults generated by semantic segmentation algorithms are not sufficient for direct recognition of fault types and reconstruction of fault surfaces. To address this problem, we propose, for the first time, a workflow to use instance segmentation algorithm to detect different fault lines. Specifically, a modified CNN (LaneNet; Neven et al., 2018) is trained using automatically generated synthetic seismic images and corresponding labels. We then test the trained CNN using both synthetic and field collected seismic data. Results indicate that the proposed workflow is accurate and effective at detecting faults.


2021 ◽  
pp. 019262332110413
Author(s):  
Anne Provencher ◽  
Paula Katavolos

This symposium synopsis summarizes key points discussed related to clinical pathology data interpretation for reproduction and juvenile toxicology studies. In pregnant and growing animals, several changes in clinical pathology parameters linked to growth/maturation of organ and physiological functions can occur, and understanding these changes is important to enable accurate interpretation of clinical pathology data. A brief overview of the general approach to clinical pathology data analysis according to contemporary practices is provided, followed by a discussion focused specifically on reproductive and juvenile clinical pathology. In this context, the approach to recognize and differentiate changes that may be related to pregnancy and growth as opposed to those that may be related to test article effects is highlighted.


2011 ◽  
Vol 675-677 ◽  
pp. 3-7
Author(s):  
Peter Häussler ◽  
Martin Stiehler

Structure formation, the condensation of a cloud of atoms to a crystal is still not well understood. Disordered sytems (amorphous/liquid) should be in the center of this research, they are the precursors of any crystal. We consider elementary systems, as well as binary, or ternary amorphous alloys, irrespective whether they are metallically, covalently or ionically bonded and describe the process of structure formation in the formal language of thermodynamics but, as far as we know for the first time, by an extended version (general dynamics), based on the complete Gibbs fundamental equation, applied to internal subsystems. Major structural features evolve from global resonances between formerly independent internal subsystems by exchanging momenta and angular momenta, both accompanied by energy. By this they adjust mutually their internal features and create spherical-periodic structural order at medium-range distances. Under the given external constraints the resonances get optimized by selforganization. Global resonances of the type considered have clearly to be distinguished from local resonances between individual ions (described by quantum chemistry) forming local order. The global resonances cause anti-bonding (non-equilibrium) as well as bonding (equilibrium) states of the coupled total system, occupying the latter to form new structurally extended order. The transition to equilibrium creates entropy which itself leaves the system together with energy. At resonance the energetical splitting between the bonding and anti-bonding state is largest, the creation of entropy and the decrease of the total energy therefore, too. The crystal, finally, evolves by additionally optimizing a resonance based on angular momentum, and the additional adjustments of the local resonances to the global ones, theoretically done by applying Bloch’s theorem.


Sign in / Sign up

Export Citation Format

Share Document