Thermal Fatigue Analysis in a High Pressure Cooling System (HPCS) Nozzle of a Boling Water Reactor

2017 ◽  
Vol 370 ◽  
pp. 162-170 ◽  
Author(s):  
Luis Héctor Hernández-Gómez ◽  
Brayan Leonardo Pérez-Escobar ◽  
Juan Alfonso Beltrán-Fernández ◽  
Juan Alejandro Flores-Campos ◽  
Salatiel Pérez-Montejo ◽  
...  

In this paper, the Cumulative Usage Factor (CUF) of a High Pressure Core Cooling System (HPCS) reactor nozzle of a Boiling Water Reactor was calculated. This fatigue damage has been caused by the sudden injection of cold water into the reactor vessel through such nozzle. For this purpose, a three-dimensional analysis was carried out. Accordingly, a transient heat transfer analysis was developed. The temperature distribution was determined. With this information, the stress analysis was carried out. The safe end was restricted to move along its axial direction and the forging end was free to expand axially and radially. The resultant stress field established the magnitude of the alternative stresses. In the last step, a fatigue analysis was developed. The most critical point is the junction of the nozzle with the thermal sleeve. The fatigue performance was evaluated during a period of sixty years. It was assumed that 1.5 cycles per year will take place. The fatigue curves of ASME code section III were used. The results showed that the Cumulative Usage Factor (CUF) vary with the temperature injection, being 0.4090 when the water injected was 4.44°C and 0.3797 when the water temperature was 37.77°C. Both of them were estimated for a period of 60 years of operation. Therefore, damage is reduced as the temperature of the injected water increases. Besides, it is advisable to at least follow the recommendations of the NUREG ́s 1800 and 1801 [1, 2]. In this way, the aging of the nozzle is adequately managed.

Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane (HPV) equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side, while the leading edge (LE) is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-averaged Navier–Stokes simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and HPVs are then investigated, considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first in which hot spot and swirl core are aligned with passage; and the second in which they are aligned with the LE. Comparisons between metal temperature distributions obtained from conjugate heat transfer (CHT) simulations are performed, evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The LE aligned configuration is determined to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage-aligned case. A strong sensitivity to both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2000 ◽  
Vol 123 (3) ◽  
pp. 693-700 ◽  
Author(s):  
N. Beithou ◽  
H. S. Aybar

There are several proposed advanced reactor systems, which consider the utilization of a steam-driven jet pump (SDJP) as an emergency core cooling system. The steam-driven jet pump is a device without moving parts, in which steam is used as an energy source to pump cold water from a pressure much lower than the steam pressure to a pressure higher than the steam pressure. In this study, the mathematical modeling of the SDJP has been done. An experimental analysis of the high-pressure SDJP has been reported by Cattadori et al. The results of the mathematical modeling of the SDJP have been compared with Cattadori’s experimental results. The comparisons show that the experimental and calculated pressure distributions are in good qualitative agreement. A parametric analysis of the SDJP is ongoing.


Nukleonika ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Tomasz Bury

Abstract The problem of hydrogen behavior in containment buildings of nuclear reactors belongs to thermal-hydraulic area. Taking into account the size of systems under consideration and, first of all, safety issues, such type of analyses cannot be done by means of full-scale experiments. Therefore, mathematical modeling and numerical simulations are widely used for these purposes. A lumped parameter approach based code HEPCAL has been elaborated in the Institute of Thermal Technology of the Silesian University of Technology for simulations of pressurized water reactor containment transient response. The VVER-440/213 and European pressurised water reactor (EPR) reactors containments are the subjects of analysis within the framework of this paper. Simulations have been realized for the loss-of-coolant accident scenarios with emergency core cooling system failure. These scenarios include core overheating and hydrogen generation. Passive autocatalytic recombiners installed for removal of hydrogen has been taken into account. The operational efficiency of the hydrogen removal system has been evaluated by comparing with an actual hydrogen concentration and flammability limit. This limit has been determined for the three-component mixture of air, steam and hydrogen. Some problems related to the lumped parameter approach application have been also identified.


Author(s):  
A. Khalatov

This paper consists of two sections. The first section of the paper illustrates successful application of the improved approach developed by author to the endwall heat transfer data analysis in a low speed linear guide vane and in a curved duct. Effects of a three dimensional turbulent flow, a horseshoe vortex, a passage vortex, as well as an entry boundary layer thickness have been considered in both passages and as a result the common experimental correlation on a local heat transfer have been derived for the H/t = 1.0 ratio. All affected factors are presented as a superposition of the linear correction functions in the basic experimental correlation for a flat plate heat transfer. In the second section the common correlation is used as the reference correlation to establish effect of the span-to-pitch ratio on the endwall heat transfer in both passages. It was found that variation in the H/t ratio affects slightly the freestream velocity; the most important result which came from the heat transfer study is that in contrast to a curved duct a heat transfer rate in a blade passage is reduced while the H/t ratio decreases. Comparison of the experimental data obtained by the author with results of the two-dimensional heat transfer prediction confirms that it is very important to take a three-dimensional heat transfer nature into account in design of the endwall convective cooling system. It has been demonstrated that distinction between the results of two- and three dimensional approach to the endwall heat transfer can achieve up to 70% at the passage’s inlet area.


Author(s):  
Alan J. Bilanin ◽  
Andrew E. Kaufman ◽  
Warren J. Bilanin

Boiling Water Reactor pressure suppression pools have stringent housekeeping requirements, as well as restrictions on amounts and types of insulation and debris that can be present in the containment, to guarantee that suction strainers that allow cooling water to be supplied to the reactor during a Loss of Coolant Accident remain operational. By introducing “good debris” into the cooling water, many of these requirements/restrictions can be relaxed without sacrificing operational readiness of the cooling system.


Author(s):  
A. Sipatov ◽  
L. Gomzikov ◽  
V. Latyshev ◽  
N. Gladysheva

The present tendency of creating new aircraft engines with a higher level of fuel efficiency leads to the necessity to increase gas temperature at a high pressure turbine (HPT) inlet. To design such type of engines, the improvement of accuracy of the computational analysis is required. According to this the numerical analysis methods are constantly developing worldwide. The leading firms in designing aircraft engines carry out investigations in this field. However, this problem has not been resolved completely yet because there are many different factors affecting HPT blade heat conditions. In addition in some cases the numerical methods and approaches require tuning (for example to predict laminar-turbulent transition region or to describe the interaction of boundary layer and shock wave). In this work our advanced approach of blade heat condition numerical estimation based on the three-dimensional computational analysis is presented. The object of investigation is an advanced aircraft engine HPT first stage blade. The given analysis consists of two interrelated parts. The first part is a stator-rotor interaction modeling of the investigated turbine stage (unsteady approach). Solving this task we devoted much attention to modeling unsteady effects of stator-rotor interaction and to describing an influence of applied inlet boundary conditions on the blade heat conditions. In particular, to determine the total pressure, flow angle and total temperature distributions at the stage inlet we performed a numerical modeling of the combustor chamber of the investigated engine. The second part is a flow modeling in the turbine stage using flow parameters averaging on the stator-rotor interface (steady approach). Here we used sufficiently finer grid discretization to model all perforation holes on the stator vane and rotor blade, endwalls films in detail and to apply conjugate heat transfer approach for the rotor blade. Final results were obtained applying the results of steady and unsteady approaches. Experimental data of the investigated blade heat conditions are presented in the paper. These data were obtained during full size experimental testing the core of the engine and were collected using two different type of experimental equipment: thermocouples and thermo-crystals. The comparison of experimental data and final results meets the requirements of our investigation.


Author(s):  
Vinesh H. Gada ◽  
Mohit P. Tandon ◽  
Jebin Elias ◽  
Andrew Splawski ◽  
Simon Lo

The Large Scale Interface (LSI) model of the Euler-Euler method in STAR-CCM+ is extended to simulate two-phase flow with phase change. This extended methodology is used to simulate direct contact condensation (DCC) of steam in a hot leg when cold water is injected by emergency core cooling system to remove the residual heat. The case corresponds an experimental study conducted at Hungarian Atomic Energy Research Institute KFKI using the PMK-2 device. Out of the several experiments reported for this scenario, the one experiment considered in this work corresponds to a case without the water hammer phenomena. It was found that the LSI model is able to capture core physics of direct contact condensation during steam-water counter-current flow in a pipe. The model could capture entrapment of steam between the interface and its subsequent rapid condensation. The role of the relaxation time-scale of the large interface drag and the turbulence damping at interface is also studied.


Author(s):  
Yabing Li ◽  
Lili Tong ◽  
Xuewu Cao

For advanced passive PWR, reactor coolant system (RCS) depressurization through automatic depressurization system (ADS) is an important measurement to avoid high-pressure melt ejection and direct containment heating. It allows injection from passive core cooling system and the implement of in-vessel retention. However, it has negative impact that hydrogen in the RCS can be released to the containment together with coolant, which may lead to hydrogen burning or even explosion in the containment. Therefore, this paper analyzes the RCS depressurization strategy during severe accident, and evaluates its negative impact. Severe accident sequences induced by station black out (SBO) was selected and analyzed with integral severe accident analysis code as a typical high pressure core melt accident scenario. Different depressurization strategies with ADS system were discussed based on Severe Accident Management Guideline (SAMG.) ADS valves were manually opened at a core exit temperature of 923 K with 20min delay for operator reaction. Both depressurization effect and hydrogen risk were evaluated for different strategies. Hydrogen distribution was calculated, which was used to determine the combustion mode in different compartments. Result shows all three strategies analyzed in this paper can depressurize the RCS effectively. And opening the ADS stage 1–3 valves causes rapidly increase of the hydrogen concentration in the in-containment refueling water storage tank (IRWST) compartment and may lead to hydrogen denotation. However, hydrogen can be well dispersed in the loop compartment with intentional open of ADS stage 4 valves to RCS depressurization. Therefore, suggestions are proposed for SAMG: implement RCS depressurization strategy with stage 4 ADS instead of ADS stage 1–3.


Sign in / Sign up

Export Citation Format

Share Document