In Situ Observation of the Phase Transformations in Ti15Mo Alloy Deformed by High Pressure Torsion

2018 ◽  
Vol 385 ◽  
pp. 206-211
Author(s):  
Miloš Janeček ◽  
Kristina Bartha ◽  
Josef Stráský ◽  
Jozef Veselý ◽  
Veronika Polyakova ◽  
...  

Metastable β-Ti alloys including Ti15Mo alloy are perspective candidates for use in medical applications. During thermal treatment Ti15Mo alloy undergoes various phase transformations. After solution treatment it contains metastable β-phase and ω-phase. During annealing the ω-phase partially dissolves as well as stable α-phase particles are formed. The solution treated Ti15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Significant grain refinement with grain size of ~100 nm was achieved even after 1/4 of HPT rotation. The effect of the ultra-fine grained (UFG) structure achieved by HPT on the phase transformations was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during in-situ heating. High density of lattice defects, dense network of grain boundaries as well as ongoing recovery and recrystallization upon heating significantly affected the phase transitions. Observation of the microstructure during in-situ heating in TEM revealed no representative changes in transparent part of the sample due to the “thin foil effect”.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2262
Author(s):  
Anna Korneva ◽  
Boris Straumal ◽  
Askar Kilmametov ◽  
Alena Gornakova ◽  
Anna Wierzbicka-Miernik ◽  
...  

It is well known that severe plastic deformation not only leads to strong grain refinement and material strengthening but also can drive phase transformations. A study of the fundamentals of α → ω phase transformations induced by high-pressure torsion (HPT) in Ti–Nb-based alloys is presented in the current work. Before HPT, a Ti–3wt.%Nb alloy was annealed at two different temperatures in order to obtain the α-phase state with different amounts of niobium. X-ray diffraction analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for the characterisation of phase transitions and evolution of the microstructure. A small amount of the β-phase was found in the initial states, which completely transformed into the ω-phase during the HPT process. During HPT, strong grain refinement in the α-phase took place, as did partial transformation of the α- into the ω-phase. Therefore, two kinds of ω-phase, each with different chemical composition, were obtained after HPT. The first one was formed from the β-phase, enriched in Nb, and the second one from the α-phase. It was also found that the transformation of the α-phase into the ω-phase depended on the Nb concentration in the α-Ti phase. The less Nb there was in the α-phase, the more of the α-phase was transformed into the ω-phase.


2021 ◽  
pp. 1-7
Author(s):  
Anna Korneva ◽  
Boris Straumal ◽  
Askar Kilmametov ◽  
Lidia Lityńska-Dobrzyńska ◽  
Robert Chulist ◽  
...  

The study of the fundamentals of the α → ω and β → ω phase transformations induced by high-pressure torsion (HPT) in Ti–Nb-based alloys is presented in the current work. Prior to HPT, three alloys with 5, 10, and 20 wt% of Nb were annealed in the temperature range of 700–540°C in order to obtain the (α + β)-phase state with a different amount of the β-phase. The samples were annealed for a long time in order to reach equilibrium Nb content in the α-solid solution. Scanning electron microscope (SEM), transmission electron microscopy, and X-ray diffraction techniques were used for the characterization of the microstructure evolution and phase transformations. HPT results in a strong grain refinement of the microstructure, a partial transformation of the α-phase into the ω-phase, and a complete β → ω phase transformation. Two kinds of the ω-phase with different chemical compositions were observed after HPT. The first one was formed from the β-phase, enriched in Nb, and the second one from the almost Nb-pure α-phase. It was found that the α → ω phase transformation depends on the Nb content in the initial α-Ti phase. The less the amount of Nb in the α-phase, the more the amount of the α-phase is transformed into the ω-phase.


2018 ◽  
Vol 144 ◽  
pp. 337-351 ◽  
Author(s):  
A.R. Kilmametov ◽  
Yu. Ivanisenko ◽  
A.A. Mazilkin ◽  
B.B. Straumal ◽  
A.S. Gornakova ◽  
...  

2021 ◽  
Vol 173 ◽  
pp. 110937
Author(s):  
A. Korneva ◽  
B.B. Straumal ◽  
A.R. Kilmametov ◽  
Ł. Gondek ◽  
A. Wierzbicka-Miernik ◽  
...  

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2412-2414
Author(s):  
Chanchal Ghosh ◽  
Manish Singh ◽  
Paul Kotula ◽  
Helena Silva ◽  
C. Barry Carter

2002 ◽  
Vol 106 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Hiroyasu Shimizu ◽  
Tatsuya Kumazaki ◽  
Tetsuji Kume ◽  
Shigeo Sasaki

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4621
Author(s):  
Carmela Gurau ◽  
Gheorghe Gurau ◽  
Felicia Tolea ◽  
Bogdan Popescu ◽  
Mihaela Banu ◽  
...  

This work focuses on the temperature evolution of the martensitic phase ε (hexagonal close packed) induced by the severe plastic deformation via High Speed High Pressure Torsion method in Fe57Mn27Si11Cr5 (at %) alloy. The iron rich alloy crystalline structure, magnetic and transport properties were investigated on samples subjected to room temperature High Speed High Pressure Torsion incorporating 1.86 degree of deformation and also hot-compression. Thermo-resistivity as well as thermomagnetic measurements indicate an antiferromagnetic behavior with the Néel temperature (TN) around 244 K, directly related to the austenitic γ-phase. The sudden increase of the resistivity on cooling below the Néel temperature can be explained by an increased phonon-electron interaction. In-situ magnetic and electric transport measurements up to 900 K are equivalent to thermal treatments and lead to the appearance of the bcc-ferrite-like type phase, to the detriment of the ε(hcp) martensite and the γ (fcc) austenite phases.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


Sign in / Sign up

Export Citation Format

Share Document