Tamanrasset’s Clay Characterization and Use as Low Cost, Ecofriendly and Sustainable Material for Water Treatment: Progress and Challenge in Copper Cu (II)

2021 ◽  
Vol 406 ◽  
pp. 457-472
Author(s):  
Aicha Kourim ◽  
Moulay Abderrahmane Malouki ◽  
Aicha Ziouche ◽  
Mouna Boulahbal ◽  
Madjda Mokhtari

In this study, the adsorption of copper Cu (II) from aqueous solution, on Tamanrasset’s clay which is low cost adsorbent, was studied using batch experiments. The adsorption study includes both equilibrium adsorption isotherms and kinetics. The characterization of the adsorbent necessitated several methods such as X-Ray Diffraction, Scanning Electron Microscopy coupled with Energy Dispersive X-ray, BET for specific surface area determination, Fourier transform infrared spectroscopy and thermogravimetric analysis. Indeed, various parameters were investigated such as contact time, initial metal ion concentration, mass of solid, pH of the solution and temperature. The adsorption process as batch study was investigated under the previews experimental parameters. The results revealed that the adsorption capacity of Cu2+ is maximized at naturel pH of metal 5.5. Removal of copper by the clay of Tamanrasset (kaolinite) achieved equilibrium within 50 minutes; the results obtained were found to be fitted by the pseudo-second order kinetics model. The equilibrium process was well described by the Langmuir model and the maximum adsorption capacity was found to be 26.59 mg/g.

2018 ◽  
Vol 78 (3) ◽  
pp. 708-720 ◽  
Author(s):  
B. Rouhi Broujeni ◽  
A. Nilchi ◽  
A. H. Hassani ◽  
R. Saberi

Abstract In this study, novel chitosan/Fe2O3nano composite Ch/Fe-Onc was synthesized and evaluated as an adsorbent for removing thorium (IV) (Th4+) ion from aqueous solution. The Ch/Fe-Onc was characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Response surface methodology (RSM) was used in the optimization of Th4+ adsorption for parameters such as pH, the initial metal ion concentration (Th4+ concentration) and contact time. The statistical measures (i.e. analysis of variance, R2, the lack of fit test and the P value) specify that the developed model is proper. Furthermore, the adsorption kinetics was well defined by the pseudo-second-order equation, while the adsorption isotherms were better fitted by the Langmuir model. The adsorption capacity of Ch/Fe-Onc was 430 mg Th4+g−1 composite which leads to 99% removal at 25 °C. Moreover, thermodynamic parameters which state the natural and endothermic nature of the reactions were determined. The loaded Th4+ can be easily regenerated with HNO3 and the Ch/Fe-Onc can be used repeatedly without any significant reduction in its adsorption capacity. The desorption level of Th4+ from the Ch/Fe-Onc by using 0.1 M HNO3, was more than 95%.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2012 ◽  
Vol 65 (8) ◽  
pp. 1341-1349 ◽  
Author(s):  
Shokooh Sadat Khaloo ◽  
Amir Hossein Matin ◽  
Sahar Sharifi ◽  
Masoumeh Fadaeinia ◽  
Narges Kazempour ◽  
...  

The application of almond shell as a low cost natural adsorbent to remove Hg2+ from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg2+ uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG0, ΔH0 and ΔS0, indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg2+ removal from a synthetic effluent.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 22-33
Author(s):  
Mahnaz Mahdavi ◽  
Mansor B. Ahmad ◽  
Md Jelas Haron ◽  
Mohamad Zaki Ab. Rahman

Cr(III) ions were adsorbed onto polyacrylamide-grafted rubberwood fibre, and effects of aqueous conditions were evaluated. The adsorbent was prepared via graft copolymerization of acrylamide (Am) onto rubberwood fibre (RWF), using ceric ammonium nitrate as an initiator. Fourier transform infrared spectroscopy was used to confirm the formation of PAm-g-RWF. Various variables affecting the adsorption capacity such as the pH of the solution, adsorption time, initial metal ion concentration, and temperature were investigated. The Cr(III) was up to 92% removed by PAm-g-RWF from an initial concentration of 10 mg/L at pH 5.0. Kinetic data fitted very well to a pseudo-second-order rate expression and less well to a pseudo-first-order equation. The equilibrium parameters for adsorption isotherms of the metal ions on the grafted fibre were obtained using Langmuir and Freundlich models, and the Langmuir model was found to be in better correlation with the experimental data with a maximum adsorption capacity of 18.24 mg/g. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were calculated; the adsorption process was spontaneous and endothermic.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 80-94 ◽  
Author(s):  
Nezam Mirzaei ◽  
Amir Hossein Mahvi ◽  
Hooshyar Hossini

This study deals with the application of Iranian zeolite as a low cost adsorbent for the removal of the Direct blue 71 (DB 71) from colored solution. Important parameters including equilibrium and contact time, initial dye concentration, effect of pH, and zeolite dosage were evaluated. Maximum dye removal was obtained at about 99.8% for 25 mg/L at 120 min of equilibrium. Higher adsorption efficiency of direct dye was obtained at higher dose and acidic pH. To analyze the adsorption equilibrium and kinetic, Langmuir, Freundlich, and Temkin isotherms as well as four kinetic models encompassing pseudo first-order, pseudo second-order, intraparticle diffusion, and Elovich were evaluated. The Langmuir isotherm ( R2 = 0.995) and pseudo second-order models, gave the best fit to equilibrium experimental data. In Langmuir analysis, the maximum adsorption capacity (qm) by 13.66 mg/g was determined. Finally, the characteristics of zeolite including both natural and modified, such as compositions, surface morphology by X-ray diffraction technique (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM) were obtained. According to XRF analysis, it was demonstrated that Al2O3 and SiO2 are the most part of natural and modified zeolite. Furthermore, the clinoptilolite was determined as the significant crystalloid phase by XRD pattern.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhongmin Li ◽  
Peng Zou ◽  
Junzhou Yang ◽  
Miaoyang Huang ◽  
Linye Zhang ◽  
...  

AbstractA novel functionalized tannin-chitosan bentonite composite (TCBC) was successfully synthesized. The formation of the composite was confirmed by the X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FT-IR) analysis. The pHpzc of TCBC was 3.38. The influences such as pH, dosage of TCBC, temperature and initial Cr(VI) concentration on adsorption capacity were investigated. The experimental data indicated that the almost saturated adsorption of the TCBC towards Cr(VI) in 100 min. The maximum adsorption capacity was 262.08 mg/g at 333 K with initial pH = 2.5. The adsorption kinetics of Cr(VI) on TCBC followed the pseudo-second-order kinetics model. The isothermal data were well described by the models of Langmuir, Freundlich and Temkin. The results revealed that the adsorption of Cr(VI) on TCBC existed comprehensive effects and mainly belong to the chemisorption. The TCBC could keep good performances (qe = 192.17 mg/g) in five runs, 1 M NaOH was used as eluent for desorption, which showed a high desorption efficiency. Studies showed TCBC prepared with low cost and green raw materials, and simple green preparation technology had high adsorption capacity, good reusability and acidic tolerance. By exploring the Cr(VI)-Cr(III) hybrid system, part of Cr(VI) was reduced to Cr(III) and adsorbed by TCBC. The optimal adsorption pH of Cr(III) was 5.0.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 458-477 ◽  
Author(s):  
Sourbh Thakur ◽  
Omotayo Arotiba

Hydrogel nanocomposites were synthesized by solution polymerization of acrylic acid in the presence of sodium alginate biopolymer and TiO2 nanoparticle. TiO2 nanoparticle and N, N-methylene-bis-acrylamide was used as an inorganic and organic crosslinker, respectively. The structure and morphology of the nanocomposites were investigated using X-Ray Diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) and thermogravimetric analysis techniques. The nanocomposites hydrogel was used for the adsorption of methyl violet dye from water. The influence of TiO2 nanoparticle, sodium alginate content and grafting on adsorption were studied. The results showed that a pseudo-second-order adsorption kinetic was predominant in the adsorption of methyl violet onto the nanocomposite hydrogel. The experimental equilibrated adsorption capacity of the nanocomposite hydrogel agrees with Langmuir isotherm. Maximum adsorption capacity of 1156.61 mg g−1 and adsorption efficiency of 99.6% towards methyl violet were obtained for the hydrogel nanocomposite.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Suriati Sufian ◽  
Muhammad Roil Bilad ◽  
Zaki Yamani Zakaria ◽  
...  

Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5–6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


Sign in / Sign up

Export Citation Format

Share Document