scholarly journals Preparation and characterization of chitosan/Fe2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution

2018 ◽  
Vol 78 (3) ◽  
pp. 708-720 ◽  
Author(s):  
B. Rouhi Broujeni ◽  
A. Nilchi ◽  
A. H. Hassani ◽  
R. Saberi

Abstract In this study, novel chitosan/Fe2O3nano composite Ch/Fe-Onc was synthesized and evaluated as an adsorbent for removing thorium (IV) (Th4+) ion from aqueous solution. The Ch/Fe-Onc was characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Response surface methodology (RSM) was used in the optimization of Th4+ adsorption for parameters such as pH, the initial metal ion concentration (Th4+ concentration) and contact time. The statistical measures (i.e. analysis of variance, R2, the lack of fit test and the P value) specify that the developed model is proper. Furthermore, the adsorption kinetics was well defined by the pseudo-second-order equation, while the adsorption isotherms were better fitted by the Langmuir model. The adsorption capacity of Ch/Fe-Onc was 430 mg Th4+g−1 composite which leads to 99% removal at 25 °C. Moreover, thermodynamic parameters which state the natural and endothermic nature of the reactions were determined. The loaded Th4+ can be easily regenerated with HNO3 and the Ch/Fe-Onc can be used repeatedly without any significant reduction in its adsorption capacity. The desorption level of Th4+ from the Ch/Fe-Onc by using 0.1 M HNO3, was more than 95%.

2021 ◽  
Vol 406 ◽  
pp. 457-472
Author(s):  
Aicha Kourim ◽  
Moulay Abderrahmane Malouki ◽  
Aicha Ziouche ◽  
Mouna Boulahbal ◽  
Madjda Mokhtari

In this study, the adsorption of copper Cu (II) from aqueous solution, on Tamanrasset’s clay which is low cost adsorbent, was studied using batch experiments. The adsorption study includes both equilibrium adsorption isotherms and kinetics. The characterization of the adsorbent necessitated several methods such as X-Ray Diffraction, Scanning Electron Microscopy coupled with Energy Dispersive X-ray, BET for specific surface area determination, Fourier transform infrared spectroscopy and thermogravimetric analysis. Indeed, various parameters were investigated such as contact time, initial metal ion concentration, mass of solid, pH of the solution and temperature. The adsorption process as batch study was investigated under the previews experimental parameters. The results revealed that the adsorption capacity of Cu2+ is maximized at naturel pH of metal 5.5. Removal of copper by the clay of Tamanrasset (kaolinite) achieved equilibrium within 50 minutes; the results obtained were found to be fitted by the pseudo-second order kinetics model. The equilibrium process was well described by the Langmuir model and the maximum adsorption capacity was found to be 26.59 mg/g.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ch. Suresh ◽  
D. Harikisore Kumar Reddy ◽  
Yapati Harinath ◽  
B. Ramesh Naik ◽  
K. Seshaiah ◽  
...  

A biosorbent was prepared by using wood apple shell (WAS) powder and studied its application for the removal of Cd(II) from aqueous solution by a batch method. The biosorbent was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. WAS is principally made up of lignin and cellulose, containing functional groups such as alcoholic, ketonic, and carboxylic groups which can be involved in complexation reactions with Cd(II). The effect of experimental parameters like initial pH, contact time, metal ion concentration, and sorbent dose on adsorption was investigated. The optimum pH for biosorption of Cd(II) onto WAS was found to be pH 5.0 and the quantitative removal of Cd(II) ions was achieved in 30 min. The kinetic study showed that the biosorption process followed the pseudo-second-order rate. Experimental data were analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Desorption studies were carried out using HCl solution.


2013 ◽  
Vol 3 (3) ◽  
pp. 239-248
Author(s):  
Mojisola O. Nkiko ◽  
Abideen I. Adeogun ◽  
N. A. Adesola Babarinde ◽  
Oluwabunmi J. Sharaibi

Biosorbent prepared from the scale of croaker fish (Genyonemus lineatus) has been used for the removal of Pb(II) ion from aqueous solution in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and biosorbent dosage on biosorption capacity were investigated. Equilibrium time for the biosorption process is 20 and 30 min at lower and higher concentrations, respectively. The process at 28 °C is in agreement with a pseudo-second-order kinetics model. The equilibrium data obeyed the Langmuir adsorption isotherm with a maximum monolayer adsorption capacity of 14.58 mg g−1. The study showed that the sorption process depends on biomass dosage, temperature, pH and initial metal ion concentration. The calculated thermodynamics parameters (ΔGo, ΔHo and ΔSo) indicated that the biosorption of the metal ion onto fish scale is feasible, spontaneous and exothermic in nature.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 22-33
Author(s):  
Mahnaz Mahdavi ◽  
Mansor B. Ahmad ◽  
Md Jelas Haron ◽  
Mohamad Zaki Ab. Rahman

Cr(III) ions were adsorbed onto polyacrylamide-grafted rubberwood fibre, and effects of aqueous conditions were evaluated. The adsorbent was prepared via graft copolymerization of acrylamide (Am) onto rubberwood fibre (RWF), using ceric ammonium nitrate as an initiator. Fourier transform infrared spectroscopy was used to confirm the formation of PAm-g-RWF. Various variables affecting the adsorption capacity such as the pH of the solution, adsorption time, initial metal ion concentration, and temperature were investigated. The Cr(III) was up to 92% removed by PAm-g-RWF from an initial concentration of 10 mg/L at pH 5.0. Kinetic data fitted very well to a pseudo-second-order rate expression and less well to a pseudo-first-order equation. The equilibrium parameters for adsorption isotherms of the metal ions on the grafted fibre were obtained using Langmuir and Freundlich models, and the Langmuir model was found to be in better correlation with the experimental data with a maximum adsorption capacity of 18.24 mg/g. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were calculated; the adsorption process was spontaneous and endothermic.


Author(s):  
Adewale Adewuyi ◽  
Fabiano Vargas Pereira ◽  
Omotayo Anuoluwapo Adewuyi

Kaolinite clay (KC) obtained from redemption camp; Nigeria was modified by surface grafting and investigated for the removal of Pb2+ and Cd2+ ions from aqueous solution by adsorption. KC and the modified kaolinite clay (MKC) were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), Particle Size Distribution (PSD), zeta potential, elemental analysis (CHNS/O analyzer) and Energy Dispersive Spectroscopy (EDS). Equilibrium, thermodynamics and kinetic studies were conducted by considering the effects of pH, initial metal ion concentration, contact time, adsorbent weight and temperature. Modification of KC increased its equilibrium adsorption capacity from 8.01 mg/g for Cd2+ and from 24.75 mg/g to 36.41 mg/g for Pb2+ ions. The adsorption process obeys Freundlich and Temkin isotherms. The adsorption was second-order-kinetic and controlled by both intra-particle and liquid film diffusion. Values of ΔGo, ΔHo, and ΔSo, for KC an MKC showed a stable adsorbent-adsorbate configuration.


Author(s):  
Alice Ndekei ◽  
Muigai- Gitita ◽  
Njagi Njomo ◽  
Damaris Mbui

The present study aimed to use chemically activated rice husk biochar as an adsorbent for the removal of heavy metals from an aqueous solution. A series of the Rice husk biochar (RHB) samples were produced at different temperatures, as follows: 300, 400, 500, 600, and 700℃ for 2 hours each through pyrolysis process in Dalhan Scientific Muffle Furnace. The chemically treated rice husk biochar synthesized at 500℃ was used as potential char for removal of Cu(II) and Pb(II) from aqueous solutions. The sorption of these metal ions from an aqueous solution was determined after adsorption using Flame Atomic Absorption Spectrophotometry (AAS). The Shimadzu IR Affinity Fourier Transform Infra-Red Spectroscopy (FT-IR) was used for the characterization of rice husk char and it revealed the presence of OH, C=O, and COO- bonds which are responsible for heavy metal ions adsorption through chemisorption. The effect of adsorption parameters was determined that is; pyrolysis temperature which was found to be 500℃, the optimal contact time for the metal ions Cu (II) and Pb (II) was found to be 60 minutes, the optimum dosage was 0.250 g and optimum initial concentration was 2 mg/l.  The kinetics were tested against pseudo-first order and pseudo-second order model as well Langmuir and Freundlich isotherms. Cu(II), adsorption process followed Pseudo-second order kinetics with regression coefficient (R2) 0.9942 and Langmuir isotherm model with R2 0.9895. For Pb(II), adsorption capacity followed Pseudo-second order kinetics with regression coefficient (R2) 0.99991 and Freundlich isotherm model with R2 0.96675 optimum equilibrium adsorption capacity of 0.5274 mg/g.


2021 ◽  
Vol 22 (7) ◽  
pp. 3447
Author(s):  
Sihan Feng ◽  
Xiaoyu Du ◽  
Munkhpurev Bat-Amgalan ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
...  

Chitosan (CS) modified with ethylenediamine tetraacetic acid (EDTA) was further modified with the zeolite imidazole framework (ZIF-8) by in situ growth method and was employed as adsorbent for the removal of rare-earth elements (REEs). The material (EDTA–CS@ZIF-8) and ZIF-8 and CS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and nitrogen adsorption/desorption experiments (N2- Brunauer–Emmet–Teller (BET)). The effects of adsorbent dosage, temperature, the pH of the aqueous solution, contact time on the adsorption of REEs (La(III), Eu(III), and Yb(III)) by EDTA–CS@ZIF-8 were studied. Typical adsorption isotherms (Langmuir, Freundlich, and Dubinin–Radushkevich (D-R)) were determined for the adsorption process, and the maximal adsorption capacity was estimated as 256.4 mg g−1 for La(III), 270.3 mg g−1 for Eu(III), and 294.1 mg g−1 for Yb(III). The adsorption kinetics results were consistent with the pseudo-second-order equation, indicating that the adsorption process was mainly chemical adsorption. The influence of competing ions on REE adsorption was also investigated. After multiple cycles of adsorption/desorption behavior, EDTA–CS@ZIF-8 still maintained high adsorption capacity for REEs. As a result, EDTA–CS@ZIF-8 possessed good adsorption properties such as stability and reusability, which have potential application in wastewater treatment.


2011 ◽  
Vol 8 (1) ◽  
pp. 373-385 ◽  
Author(s):  
B. Sathyanarayana ◽  
K. Seshaiah

The sorption of manganese(II) and nickel(II) onto two adsorbents, kaolinite and bentonite from aqueous solution was studied in batch mode. Effect of pH, contact time, adsorbent dose, and initial metal ion concentration on adsorption was investigated. The adsorbents exhibit good sorption potential for manganese(II) and nickel(II) with a peak value at pH 5 and pH 6 respectively. More than 70% sorption occurred within 20 min for manganese(II) and nickel(II) and equilibrium was attained at 90 min. for manganese(II) and 120 min for nickel(II). Freundlich and Langmuir's mathematical models were used to describe batch adsorption. The adsorption was found to be favourable with respect to both the isotherms. The adsorption of the two metal ions from aqueous solution onto two adsorbents followed pseudo-second order kinetics.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yosef Asrat ◽  
Amare Tiruneh Adugna ◽  
M. Kamaraj ◽  
Surafel Mustefa Beyan

In this study, activated carbon was prepared from locally available bamboo (Arundinaria alpina) in Ethiopia to remove Pb (II) from wastewater. Various effects such as solution pH, initial Pb (II) ion concentration, and adsorbent dose were investigated and accordingly discussed, and the process was carried out on a batch adsorption base. Dried Arundinaria alpina stem was activated with potassium hydroxide (KOH) at a ratio of 1 : 1 (w/v) and carbonized in a furnace at three temperature ranges (500oC, 600oC, and 700oC) for 3 h. The physicochemical of Arundinaria alpina stem activated carbon (AASAC) was investigated and the resultant of 500oC treatment setup is found as ideal in terms of yield (40.6 g), ash (3.5%), porosity (0.704%), moisture (7.7%), and iodine number (814.69 mg/g). The further characterization of ideal AASAC was carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy, and Fourier transform infra-red (FTIR). The optimum Pb (II) removal efficiency of AASAC was 99.8% at pH 5 in a synthetic solution, but the efficiency declined to 60.42% on real industrial wastewater due to the presence of its mixed pollutant nature. Freundlich isotherm model is more favorable than Langmuir with a high correlation coefficient (R2-0.9496) for Pb (II) adsorption. The study revealed that AASAC has a potential adsorption efficiency to remove the Pb (II) ion from the aqueous solution which is also recommended as an adsorbent for real industry wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document