The Use of SEM/EDX Analysis to Investigate the Pore Effect on the Mechanical Properties of some Selected Tropical Hardwoods

Author(s):  
Joseph Olawale Akinyele ◽  
Abidemi Bashiru Folorunsho

Previous studies have investigated the effect of moisture content on the physical and mechanical properties of timber species. This study investigated the effect of the tube-like grain pores in the wood and the presence of elemental impurities on the failure mechanism of four tropical hardwoods. The four hardwood species are Mahogany, Albizia, Beech and Birch. The moisture content of each wood specie was determined at normal temperature, mechanical tests were conducted to determine the strength of each wood samples, while the Scanning Electron Microscopy/ Energy Dispersion X-ray (SEM/EDX ) analysis was carried out to determine the high-resolution images and elemental peaks of the wood specie. The work concluded that beech wood failed earlier when compared to the other three samples due to high moisture content that is above the fibre saturation point. The SEM/EDX test revealed that the early failure was also as a result of the presence of large pores and elemental impurities in the sample of Beech wood.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 801
Author(s):  
Mohammad Najafian Ashrafi ◽  
Hooman Shaabani Asrami ◽  
Zeynolabedin Vosoughi Rudgar ◽  
Mohammad Ghorbanian Far ◽  
Ali Heidari ◽  
...  

Beech (Fagus orientalis Lipsky) forests in Iran are one of the most important sources of the hardwood species used for lumber, furniture, and interior object design due to its hardness, wear resistance, strength, and excellent bending capabilities. Furthermore, Iran is third most important country for walnut wood production after China and United States. Therefore, in this study, we compared specific mechanical properties between beech wood obtained from Sangdeh (Iran) and Georgia and four different kinds of walnut woods in Iran. Physical and mechanical tests were performed according to ISO 3129 (2012) and ASTM (D143-14) standards. The moisture content of all samples was 12% during mechanical tests. The mean dry density of Sangdeh and Georgian beech obtained was 0.61 and 0.65 g/cm3, respectively, while the mean dry density of Noor, Shahrekord, Mashhad, and Mako walnut woods measured 0.62, 0.59, 0.62, and 0.57 g/cm3, respectively. The results showed significant differences among the properties of the Sangdeh and Georgian species and the four different walnut tree woods. Overall, the obtained strengths of Georgian timber were higher than that of the Iranian beech, which was attributed to the higher density of Georgian timber. Furthermore, due to the higher density of the walnut species in the Noor and Mashhad regions, the measured mechanical strengths of these trees were higher than those of other walnut species. The obtained results provide relevant information to determinate the future applications of each wood source.


2022 ◽  
Vol 951 (1) ◽  
pp. 012001
Author(s):  
S Osman ◽  
M Ahmad ◽  
M N Zakaria ◽  
A M Zakaria ◽  
Z Ibrahim ◽  
...  

Abstract In this paper, bending strength and physical properties (specific gravity, dimensional stability and equilibrium moisture content) of a Malaysian bamboo locally known as Beting bamboo (Gigantochloa levis) are addressed. Characterizations of physical and bending strength of G. levis in terms of the variability of location along culm height (top, middle, bottom), culm section (nodes and internodes), fiber orientation (longitudinal, tangential and radial) and culm layer (outer and inner) were conducted. Comparison of these properties is also made to some bamboo and commercial timber species. It was found that G. levis has favorable physical and mechanical properties although the specific gravity of G. levis has tendency to be on the higher side. The characteristics studied were found to have some variability at different locations, sections, and directions. There was variability in terms of bending strength along with the culm height of bamboo. It is indicated from this study that the bending strength and physical properties of G. levis were found to be satisfactory.


2012 ◽  
Vol 26 (2) ◽  
pp. 211-215 ◽  
Author(s):  
A. Taheri-Garavand ◽  
A. Nassiri ◽  
S. Gharibzahedi

Physical and mechanical properties of hemp seedThe current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (P<0.05). The results of mechanical tests demonstrated that the effect of loading rate on the mechanical properties of hemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (P<0.01). The lowest value of rupture force was obtained at the highest loading rate (3mm min-1)and in the moisture content of 27.12% d.b. Moreover, the interaction effects of loading rate and moisture content on the rupture force and energy of hemp seed were significant (P<0.05).


CERNE ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Hamid Reza Taghiyari ◽  
Roya Majidi ◽  
Asghar Jahangiri

ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.


Author(s):  
J. Criollo Barahona ◽  
D. Román Robalino ◽  
E. Cabezas ◽  
E. Salazar Castañeda

The present investigation aims to determine the physical and mechanical properties in three-layer boards of Teak (Tectona grandis), Seike (Cedrelinga catenaeformis) and Mascarey (Hieronima alchorneoides), from the PISMADE S.A. Company, Canton Riobamba, province of Chimborazo. The three specimens used for each of the species in each of the tests performed were worked on using the ASTM D143-94 standard for the tests of parallel compression, perpendicular compression and flexion, and the DIN-52182 standard, with the main variation in thickness measurements caused by the commercial use established by the company. Mechanical tests showed that Seike had the best results, being superior in two tests: perpendicular compression and flexion. Teak tests gave us results that were superior in the perpendicular compression test. Mascarey, unlike the two species mentioned above, had complications during the trials due to problems with the glue between layers. Keywords: physical and mechanical properties of wood, three-layer boards. Resumen La presente investigación pretende: Determinar las propiedades físicas y mecánicas en tableros tricapa de Teca, Seike (Cedrelinga catenaeformis) y Mascarey (Hyeronima alchorneoides), Empresa PISMADE S.A., cantón Riobamba, provincia de Chimborazo; para lo cual se utilizaron 3 probetas por cada una de las especies en cada uno de los ensayos realizados, las mismas fueron trabajadas con base a la Norma ASTM D143-94 para las pruebas de compresión paralela, compresión perpendicular y flexión y la Norma DIN-52182, teniendo como principal variación en las medidas de espesor debido al uso comercial establecido por la empresa. Las pruebas mecánicas mostraron que Seike tuvo los mejores resultados al ser superior en dos ensayos: Compresión perpendicular y flexión. Los ensayos con Teca nos dieron como resultados que es superior en el ensayo de compresión perpendicular. Mascarey a diferencia de las dos especies mencionadas anteriormente tuvo complicaciones con los ensayos debido a problemas con el pegamento entre capas. Palabras clave: propiedades físicas y mecánicas de la madera, tableros tricapa.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1102 ◽  
Author(s):  
Ladislav Reinprecht ◽  
Miroslav Repák

The European beech (Fagus sylvatica L.) wood was thermally modified in the presence of paraffin at the temperatures of 190 or 210 °C for 1, 2, 3 or 4 h. A significant increase in its resistance to the brown-rot fungus Poria placenta (by 71.4%–98.4%) and the white-rot fungus Trametes versicolor (by 50.1%–99.5%) was observed as a result of all modification modes. However, an increase in the resistance of beech wood surfaces to the mold Aspergillus niger was achieved only under more severe modification regimes taking 4 h at 190 or 210 °C. Water resistance of paraffin-thermally modified beech wood improved—soaking reduced by 30.2%–35.8% and volume swelling by 26.8%–62.9% after 336 h of exposure in water. On the contrary, its mechanical properties worsened—impact bending strength decreased by 17.8%–48.3% and Brinell hardness by 2.4%–63.9%.


Sign in / Sign up

Export Citation Format

Share Document