Failure Behavior of Anodized Coating-Magnesium Alloy Substrate Structures

2004 ◽  
Vol 261-263 ◽  
pp. 363-368 ◽  
Author(s):  
Xi Shu Wang ◽  
Xi Qiao Feng ◽  
Xing Wu Guo

This work focuses on the damage mechanisms and the resulting failure behavior of structures made of anodized coatings on magnesium alloy substrates. The failure of anodized coatings of about 30µm thickness on AZ91D substrates was investigated under three-points bending loading with online scanning electron microscope (SEM) observations. The obtained SEM images show that void nucleation and crack initiation occurs mainly at sites near the coating-substrate interface, and the evolutionary microcracking damage diffuses from the interface to the coating surface and also to the bulk substrate with the increasing in loading.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1700 ◽  
Author(s):  
Xi-Shu Wang ◽  
Chang-Hao Tan ◽  
Juan Ma ◽  
Xiao-Dong Zhu ◽  
Qing-Yuan Wang

The low cycle fatigue tests on the crack initiation and propagation of cast magnesium alloys with two small holes were carried out by using in-situ scanning electron microscope (SEM) observation technology. The fatigue crack propagation behaviors and fatigue life, which are affected by two small artificial through holes, including the distances between two holes and their locations, were discussed in detail based on the experimental results and the finite element analysis (FEA). The results indicated that the fatigue multi-cracks occurred chiefly at the edges of two holes and the main crack propagation was along the weak dendrite boundary with the plastic deformation vestiges on the surface of α-Mg phase of cast AM50 and AM60B alloys. The fatigue cracking characteristics of cast AZ91 alloy depended mainly on the brittle properties of β-Mg17Al12 phase, in which the multi-cracks occurred still at the edges of two holes and boundaries of β-Mg17Al12 phase. The fatigue crack initiation position of cast magnesium alloys depends strongly on the radius of curvature of through hole or stress concentration factor at the closed edges of two through holes. In addition, the fatigue multi-cracks were amalgamated for the samples with titled 45° of two small holes of cast Mg-Al alloys when the hole distance is less than 4D (D is the diameter of the small hole).


2011 ◽  
Vol 194-196 ◽  
pp. 150-156 ◽  
Author(s):  
Fang Dong ◽  
Cheng Su ◽  
Yuan Yuan Bai

Hot-ductility tests of the microalloyed Q345B structural steel were performed in a tensile machine of Gleeble-1500D at different strain rates of 1.5•10-3/s 、2.5•10-3/s and 2•10-2/s and at temperature range from 1300°C to 700°C(Δ T=100°C ), which are close to the continuous casting condition of steel. Fracture surfaces were examined using a scanning electron microscope; it was found that the hot decrease as strain rate decrease, because the void growth mechanism predominates over void nucleation, giving time for nucleation cracks to grow. The minimum ductility was found at about 800°C for the strain rates of 1.5•10-3/s and 2.5•10-3/s, and the fracture was intergranular. The steel has good plasticity in temperature range from 1200°C to 900°C which is suitable for straighten operation.


2009 ◽  
Vol 417-418 ◽  
pp. 521-524
Author(s):  
Michael Marx ◽  
Wolfgang Schäf ◽  
Markus T. Welsch ◽  
Horst Vehoff

From the emission of dislocations till short crack propagation fatigue is a local process determined by the microstructure. In this paper we present experiments based on refined applications of the scanning electron microscope and focused ion beam technique, which give detailed information about crack initiation and the interaction of short fatigue cracks with microstructural elements.


Author(s):  
X Wei ◽  
C-H Lee ◽  
Z Jiang ◽  
K Jiang

Recently, microelectroforming has been extensively applied to fabricating metallic components for sensors, actuators, and other systems. Thick photoresists are used for making micromoulds for electroforming and closely related to the quality and costs of an electroforming process. In the current paper, thick UV photoresists SU8, BPR100, and KMPR are analysed and compared in their electroforming performance of nickel microcomponents. Optimized UV lithography processes are introduced for producing micromoulds in each of the resists and scanning electron microscope (SEM) images of the moulds are presented and analysed. Then, electroformed nickel components from the micromoulds are presented. Finally, applicability of the photoresists to electroforming microcomponents is discussed. Each of the resists demonstrates advantages and disadvantages to suit different applications.


2012 ◽  
Vol 550-553 ◽  
pp. 792-797 ◽  
Author(s):  
Wei Lu Zhang ◽  
Xiao Ni Shi ◽  
Xin Zhang ◽  
Chun Hua Han ◽  
Dong Zhang

Different sulfates were used as the catalysts of polyethylene terephthalate (PET) depolymerization under microwave of 250 watts, in which ZnSO4presented the best catalysis in this reaction, and the depolymerization degree (DPD) of PET was reached to 90 %. It was found that the depolymerization was occurred simultaneously on the surface and the internal parts of PET chips by the observation of scanning electron microscope (SEM) images. In addition, DPD increased with the improvement of the polarization forces of these sulfates.


2018 ◽  
Vol 55 (5B) ◽  
pp. 18
Author(s):  
Truong Thi Nam

Zinc coatings have been deposited electrochemically from cyanine free alkaline solutions containing zinc ions with the presence of polyamine 70.000 and polyvinyl alcohol at different contents. The scanning electron microscope (SEM) images showed that the size of zinc grains decreased with the presence of polyamine 70.000 and polyvinyl alcohol with smoother surface of zinc coating. The polarization measurements also revealed that the coatings with the presence of polyamine or polyvinyl alcohol possessed higher value of polarity degree. This result is in good agreement with the result obtained from SEM images.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Cao ◽  
Han Zhang ◽  
Jun Yu ◽  
Tianchong Yu ◽  
Yuxing Qing

Determination of the mechanical properties of rock containing pre-existing cracks under tension condition is of great significance to understand the failure process of rock in engineering. This paper presents the experimental results of sandstone containing pre-existing cracks under Brazilian compression. The characteristics of the microcracks were analyzed by a scanning electron microscope. The results show that the rock containing pre-existing cracks has an obvious anisotropic characteristic. When the crack inclination is 45°, the rock has the minimum tensile strength and the weakest axial deformation resistance.


Author(s):  
Suresh Panchal ◽  
Unnikrishnan Gopinathan ◽  
Suwarna Datar

Abstract We report noise reduction and image enhancement in Scanning Electron Microscope (SEM) imaging while maintaining a Fast-Scan rate during imaging, using a Deep Convolutional Neural Network (D-CNN). SEM images of non-conducting samples without conducting coating always suffer from charging phenomenon, giving rise to SEM images with low contrast or anomalous contrast and permanent damage to the sample. One of the ways to avoid this effect is to use Fast-Scan mode, which suppresses the charging effect fairly well. Unfortunately, this also introduces noise and gives blurred images. The D-CNN has been used to predict relatively noise-free images as obtained from a Slow-Scan from a noisy, Fast-Scan image. The predicted images from D-CNN have the sharpness of images obtained from a Slow-Scan rate while reducing the charging effect due to images obtained from Fast-Scan rates. We show that using the present method, and it is possible to increase the scanning rate by a factor of about seven with an output of image quality comparable to that of the Slow-Scan mode. We present experimental results in support of the proposed method.


2021 ◽  
Author(s):  
RAJA KALIYAPERUMAL ◽  
T.KASILINGAM

Abstract Inhibition action of 4-Chloro-N(3,4,5-trimethoxybenzilidene) benzohydrazide on the corrosion of magnesium alloy in alkaline medium was investigated by weight-loss technique, Nyquist spectra, Tafel plot, scanning electron microscope and energy dispersive x-ray analysis. Tafel curves of magnesium alloy showed both anodic and cathodic process suppressed. Nyquist plots, scanning electron microscope and energy dispersive x-ray analysis studies provide the confirmatory evidence for the protection of magnesium alloy by the studied inhibitor.


Sign in / Sign up

Export Citation Format

Share Document