Elastic Web Buckling Strength of Pultruded Flexural Members

2004 ◽  
Vol 261-263 ◽  
pp. 621-626 ◽  
Author(s):  
Soon Jong Yoon ◽  
Jae Ho Jung ◽  
Won Sup Jang

This paper presents the analytical investigations pertaining to the elastic buckling behavior of orthotropic composite plates. By the pultrusion process the structural shapes composed of orthotropic plate components are readily available in the construction market. When the member is utilized for the flexure, lateral-torsional buckling and local buckling behaviors must be taken into consideration. In the local buckling analysis, flange and web local buckling analyses must be conducted in the design of such a member. For finding the web buckling strength, the buckling equation for the orthotropic plate under linearly distributed in-plane forces is derived by using the Rayleigh-Ritz method. The boundary conditions of plate are assumed that the loaded edges are simply supported and the unloaded edges are simply supported or fixedly supported. The buckling coefficient of a plate having different orthogonal mechanical properties is found by using the numerical technique and the minimum buckling coefficient is suggested. In addition, simplified form of equation for predicting the minimum buckling coefficient for the plate is proposed. Brief discussion on the design criteria relating to the web local buckling is also provided.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jiaxing Ma ◽  
Tao Wang ◽  
Yinhui Wang ◽  
Kikuo Ikarashi

Numerical analyses and theoretic analyses are presented to study the elastic buckling of H-section beam web under combined bending and shear force. Results show that the buckling stress of a single web with clamped edges gives a good agreement with the buckling stress of an H-section beam web when the local buckling of the beam is dominated by the web buckling. Based on theoretic analyses, a parametric study is conducted to simplify the calculation of buckling coefficients. The parameters involved are clarified first, and the improved equations for the buckling coefficient and buckling stress are suggested. By applying the proposed method, the web buckling slenderness ratio is defined. It is verified that the web buckling slenderness ratio has a strong correlation with the normalized ultimate strength of H-section beams when the buckling of the beams is dominated by web buckling. Finally, a design equation is proposed for the ultimate strength of H-section beams.


1998 ◽  
Vol 42 (01) ◽  
pp. 56-67 ◽  
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Young Eel Park

The aim of the present study is to analytically investigate the characteristics of local buckling of the stiffener web in the stiffened panels under uniaxial compressive loads. A plate-stiffener combination model is used as representative of the stiffened panel. The elastic buckling condition for the stiffener web is analytically derived by solving the characteristic value problem involving the governing differential equation under the corresponding loading and boundary conditions. A series of analyses of stiffener web buckling strength for varying proportions of plating and web/flange is carried out. Based on the computed results, a basic investigation of stiffener web buckling is made. Closed-form approximate expressions for predicting the buckling strength of the stiffener web are derived taking into account the influence of rotational restraints at the plate-stiffener web connection and stiffener web-flange intersections. Design considerations for potentially preventing buckling of the stiffener web are then discussed. The computed basic results for the stiffener web buckling coefficient are documented.


2007 ◽  
Vol 07 (03) ◽  
pp. 487-517 ◽  
Author(s):  
PIZHONG QIAO ◽  
LUYANG SHAN

A variational formulation of the Ritz method is used to establish an eigenvalue problem for the local buckling behavior of composite plates elastically restrained (R) along their four edges (the RRRR plates) and subjected to biaxial compression, and the explicit solution in terms of the rotational restraint stiffness (k) is presented. Based on the different boundary and loading conditions, the explicit local buckling solution for the rotationally restrained plates is simplified to several special cases (e.g. the SSSS, SSCC, CCSS, CCCC, SSRR, RRSS, CCRR, and RRCC plates) under biaxial compression (and further reduced to uniaxial compression) with a combination of simply-supported (S), clamped (C), and/or restrained (R) edge conditions. The deformation shape function is presented by using the unique harmonic functions in both the axes to account for the effect of elastic rotational restraint stiffness (k) along the four edges of the orthotropic plate. A parametric study is conducted to evaluate the influences of the loading ratio (α), the rotational restraint stiffness (k), the aspect ratio (γ), and the flexural-orthotropy parameters (α OR and β OR ) on the local buckling stress resultants of various rotationally restrained plates, and design plots with respect to these parameters are provided. The present explicit local buckling solution of the elastically restrained composite plates and the associated design plots can be employed to facilitate design analysis of composite structures (e.g. stiffened panels, thin-walled structures, and honeycomb cores).


1992 ◽  
Vol 1 (1) ◽  
pp. 096369359200100
Author(s):  
Yoshiaki Yasui

The buckling strength and behavior of the simply-supported rectangular FRP plate with a centrally located hole under uniaxial and biaxial compressive loading is elucidated as the numerical results of FEM. The composite materials consisting of carbon-fiber/epoxy are treated as the case of angle-ply and cross-ply orthotropic laminates.


2018 ◽  
Vol 18 (06) ◽  
pp. 1850079 ◽  
Author(s):  
Jianghui Dong ◽  
Xing Ma ◽  
Yan Zhuge ◽  
Julie E. Mills

This paper addresses the compressive local buckling behavior of an infinitely long laminated composite plate resting on a tensionless elastic foundation (Winkler foundation). The analytical solution to the contact buckling coefficient of a laminated composite plate is derived using a one-dimensional analytical method. Numerical examples are considered to investigate the influence of the ply angle and foundation stiffness on the contact buckling coefficients of laminated composite plates under uniaxial compression. The lateral boundary conditions including clamped and simply-supported edges are treated. Finally, finite element (FE) analysis is conducted to provide an independent check on the analytical solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


Sign in / Sign up

Export Citation Format

Share Document