Investigations of Interfacial Reaction and Shear Strength between Pb-Free Flip Chip Solder and Electroplated Cu UBM

2005 ◽  
Vol 297-300 ◽  
pp. 863-868
Author(s):  
Dae Gon Kim ◽  
Hyung Sun Jang ◽  
Jong Woong Kim ◽  
Seung Boo Jung

In the present work, we investigated the interfacial reactions and shear properties between Sn-3.0Ag-0.5Cu flip chip solder bump and Cu UBM after multiple reflows. The quantitative analyses of the intermetallic compound layer thickness as a function of the number of reflows were performed. After six reflows, the reaction product could be distinguished by two intermetallic compounds: Cu3Sn adjacent to the substrate and Cu6Sn5 which was the dominant phase. The thickness of total intermetallic compound layers increased with the number of reflows. The shear strength value did not significantly change as a function of the number of reflows. Nearly all of the test specimens showed ductile failure mode, and this could be well explained with the results of FEM analyses.

2015 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Peter K. Bernasko ◽  
Sabuj Mallik ◽  
G. Takyi

Purpose – The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints. Design/methodology/approach – To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester). Findings – It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids. Research limitations/implications – A proper correlation between shear strength and fracture mode is required. Practical implications – The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint. Originality/value – The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.


2005 ◽  
Vol 486-487 ◽  
pp. 273-276
Author(s):  
Dae Gon Kim ◽  
Hyung Sun Jang ◽  
Young Jig Kim ◽  
Seung Boo Jung

In the present work, the growth kinetics of intermetallic compound layer formed in Sn-3.5Ag flip chip solder joints by solid-state isothermal aging was examined at temperatures between 80 and 150 °C for 0 to 60 days. The bumping for the flip chip devices was performed using an electroless under bump metallization. The quantitative analyses were performed on the intermetallic compound layer thickness as a function of aging time and aging temperature. The layer growth of the Ni3Sn4 intermetallic compound followed a parabolic law within a given temperature range. As a whole, because the value of the time exponent (n) is approximately equal to 0.5, the layer growth of the intermetallic compound was mainly controlled by diffusion mechanism in the temperature range studied. The apparent activation energy of the Ni3Sn4 intermetallic was 49.63 kJ/mol.


2004 ◽  
Vol 19 (8) ◽  
pp. 2471-2477 ◽  
Author(s):  
Yeh-Hsiu Liu ◽  
Chiang-Ming Chuang ◽  
Kwang-Lung Lin

The shear strength, intermetallic compound formation, and failure mechanism of high-lead solder (5Sn–95Pb) bump on flip chip under bump metallurgy, Al/Ni(V)/Cu, were investigated after thermal cycling, multiple reflow, and high-temperature aging. Two kinds of intermetallic compound, Cu3Sn and AlxNiy, were found at the interface. The Cu3Sn was formed between the solder and Ni(V) layer while AlxNiy was formed between Ni(V) and Al layer. The formation of the Cu3Sn compound will not affect the shear strength, 27–30 g, of the solder bump even after a high temperature long time aging test. However, the shear strength after the 30th reflow drops to less than 25 g, ascribed to the formation of a brittle compound, AlxNiy. The failure modes of the solder bump upon shear test were also discussed.


2020 ◽  
Vol 49 (12) ◽  
pp. 2983-2990
Author(s):  
Atiqah Mohd Afdzaluddin ◽  
Maria Abu Bakar

Solder joint is important for providing mechanical support and functionality of electronic packaging. Established solder joint should be able to withstand in device service operation and the environment without significant changes in terms of their microstructural evolution and mechanical properties. This study investigates the effect of the coating element (Sn and Ni) on the joining stability of Sn-0.3Ag-0.7Cu solder joint. The solder joints were exposed to different aging test for 1000 h to observed microstructure and micromechanical properties changes. Microstructural observation by means of intermetallic compound layer thickness due to the aging temperature effect. Joining stability by means of micromechanical changes were studied using nanoindentation approach. It was found that the elastic behavior, reduced modulus, and hardness of Sn-0.3Ag-0.7Cu solder joint has reduced due to aging test. However, the plastic behavior of Sn-0.3Ag-0.7Cu solder joint has increased with the increase of the aging temperature. It is observed that the Ni coating has a significant effect and a more stable solder joint achieved. This can be evidenced from small changes in intermetallic compound layer thickness and micromechanical properties were achieved using Ni coating as compared to Sn coating after subjected to the aging test for 1000 h.


Sign in / Sign up

Export Citation Format

Share Document